¹ E. A. Strelnikova, Doctor of Technical Sciences
² T. F. Medvedovskaya, Candidate of Technical Sciences
² E. L. Medvedeva
³ A. V. Linnik
³ O. N. Zelenskaya
¹ A. Podgorny Institute of Mechanical Engineering Problems of NASU, Kharkiv, Ukraine,
² Kharkov Turbo Engineering,

Kharkiv, Ukraine, e-mail: khte@online.kharkov.ua ³ PJSC 'Turboatom', Kharkiv, Ukraine, e-mail: lynnyk@turboatom.com.ua

Ключові слова: кришка, гідротурбіна, модернізація, метод скінченних елементів, метод граничних елементів, динамічний напружено-деформований стан.

UDC 539.3

USE OF COMPUTER TECHNOLOGIES IN MODERNIZATION OF HEAD COVERS FOR ПЛ 20-B-500 KAPLAN TURBINES

Описані методики, розроблені для дослідження динамічного напружено-деформованого стану кришки гідротурбіни, застосування яких обтрунтовано нормативним документом «Розрахунок залишкового ресурсу елементів проточної части гідротурбін ГЕС та ГАЕС. Методичні вказівки» СОУ-Н МЕВ 40.1 -21677681-51:2011. Вперше в тривимірній постановці враховано вплив приєднаних мас води конструкції із застосуванням математичних моделей, що трунтуються на гіперсингулярних рівняннях і поєднанні методів скінченних та граничних елементів. Отримано чисельні результати, що дозволяють оцінити з урахуванням впливу води динамічний напружено-деформований стан литої чавунної кришки гідротурбіни ПЛ 20 В-500, а також розробленої для її заміни конструкції сталевої зварної кришки. Виконано аналіз дослідження та надано рекомендації чисельного для проектування зварної кришки, динамічні характеристики якої дозволяють виключити резонансні явища та забезпечити експлуатаційну надійність.

Introduction

In recent years, the level of requirements for the efficiency and reliability of energy equipment has increased sharply, and a considerable use of energy potential in many countries of the world, including Ukraine, has resulted in the necessity to modernize and replace the HPS turbine equipment which has been in operation for a long time. Evaluation of the efficiency and scope of the reconstruction requires computer technologies using specialized software to study the strength and dynamics of the parts and components of the turbines.

When deciding on the scope of modernization, in particular, one considers the necessity to replace or extend the service life of the head covers of turbines, which are one of its most metal consuming units. In the previous designs of the turbines, the head covers were usually made in the form of cast iron castings, whereas at present, they are welded from carbon steel sheets. It should be emphasized that the elastic properties of gray cast iron used for the castings earlier depend on the amounts of graphite inclusions: a modulus of elasticity can amount to 40 - 75 % of the elastic modulus of steel, about 67 % of Poisson's ratio, and the density of cast iron – to 90 - 95 % of the density of steel. If in the process of modernization of the turbine a decision has been made to replace the head cover, it is of interest to carry out a comparative numerical analysis of the stress-strain state of the head cover used and the head cover being designed.

The main requirements for the design of the head cover are to provide not only strength but also rigidity, as well as vibration reliability since the head cover vibrations in both axial and radial directions must meet the existing standards. A special feature of the problem is the necessity to fit the new cover into the existing flow section.

A regulatory document has been developed to assess the service life of the elements of the flow section, including the head covers for the said turbines [1]. The reliability of the results obtained by the developed procedure is confirmed in [2]. This approach was developed in [3 - 4] to determine the stress-strain state of a constructive and orthotropic body under asymmetric stress, which makes it possible to reduce the computations of the required displacements to the solution of independent problems for each term in the Fourier series expansion. One of the important tasks solved both in forecasting the service life of the head covers, and in the case of replacing cast iron head covers with steel ones, is an accurate determination of their eigenfrequencies, taking into account the effect of a liquid. This paper describes a technique in which,

[©] E. A. Strelnikova, T. F. Medvedovskaya, E. L. Medvedeva, A. V. Linnik, O. N. Zelenskaya, 2018

in contrast to [5-7], the modes of vibration of the head cover in a liquid are represented as the eigenmode expansion of its vibrations in a vacuum. The developed technique for constructing matrices of the additional masses of the load-bearing structures interacting with a liquid is described in [8-9] and is given below. This approach makes it possible to reduce the computations of the required displacements to the solution of independent problems for each term in the Fourier series expansion.

Free hydroelastic vibrations of turbine head covers

We write the system of equations of motion of a deformable construction symbolically as

$$L(\mathbf{U}) + M(\mathbf{U}) = \mathbf{P}, \qquad (1)$$

where *L* and *M* are the operators of elastic and mass forces; **P** is the pressure of the liquid on the structural element in question (blade); $\mathbf{U} = (u_1, u_2, w)$ is a vector-function of displacements. The speed of the oncoming stream is assumed to be zero. The liquid motion is studied in a 3D formulation by the methods in potential theory. It is assumed that the liquid is ideal, free vortices are not formed and they do not descend from the lifting surface. In this case, there exists a velocity potential that satisfies the harmonic equation everywhere outside the plate, and on the face surfaces of the plate S^{\pm} – the no-flow condition. For a potential flow, the perturbed velocity of the liquid is represented as

$$\mathbf{v}(x, y, z, t) = \operatorname{grad} \mathbf{\Phi}(x, y, z, t), \tag{2}$$

where $\Phi(x, y, z, t)$ is the potential of velocities induced by small free vibrations of the plate. To determine the pressure of a liquid on wetted surfaces, the Cauchy-Lagrange integral is used. To find the pressure on the deformable surface from the liquid side, it is necessary to determine function $\Phi(x, y, z, t)$ by solving the Laplace equation with the following boundary condition:

$$\left(\operatorname{grad}\mathbf{\Phi}\cdot\mathbf{n}\right)_{S} = \frac{\partial\overline{w}}{\partial t},$$
(3)

Thus, it is required to determine functions U, $\Phi(x, y, z, t)$, satisfying the system of differential equations (1) – (2), the no-flow conditions (3), the conditions for fixing and damping the perturbed velocity of the liquid at infinity. The literature has no numerical studies to determine the eigenfrequencies and vibration modes of such structural elements in a liquid. Earlier, to estimate the influence of a liquid on the frequency of eigen-vibrations, the results obtained using the approximate Rayleigh-Lamb approach were used. In this case, shapes of the radial plate were taken as forms of free vibrations for the turbine head cover, while 2D models were used for the turbine blade array.

In this paper, a method for calculating the frequencies and forms of free vibrations of the structures interacting with a liquid is proposed, based on the attraction of the apparatus of singular and hypersingular integral equations.

To solve this problem, we apply the method of given forms [10]. At the first stage, in a 3D formulation, a calculation of the frequencies and modes of vibration of the structure in a vacuum is carried out with the help of the finite element method and its modification for the body of revolution. The obtained modes of free vibrations are chosen as the basic system of functions, by which they are decomposed into a series of the vibration modes of the structure in question in a liquid.

Let us study the case of harmonic vibrations. Then the problem under consideration reduces to

$$L(\mathbf{u}) + M(\mathbf{u}) = (0, 0, i\Omega\rho_2(\varphi^- - \varphi^+)), \quad \nabla^2 \varphi = 0; \quad \frac{\partial \varphi}{\partial \mathbf{n}} |_{S^{\pm}} = i\Omega w.$$
(4)

We represent the function $\varphi(x, y, z)$ as a potential of a double layer with an unknown density. Then the problem of determining the pressure (4) reduces to solving the integral equation

$$\frac{1}{4\pi} \iint_{S} \Gamma(\xi) \frac{\partial^2}{\partial \mathbf{n}_x \partial \mathbf{n}_{\xi}} \left[\frac{1}{|\mathbf{x} - \xi|} \right] dS_{\xi} = i\Omega w.$$
(5)

Suppose that the eigenmodes of vibrations in a liquid are representable as

$$w = \sum_{k=1}^{N} c_k w_k \; .$$

Let the functions $\Gamma_k(\xi)$ be solutions of the hypersingular equation (5) with appropriately chosen right-hand sides:

 $w = w_k$.

To solve the hypersingular equation (5), the discrete singularity method was applied [5, 6]. In this case, the integration domain was divided into a finite number of quadrangular subdomains N_s , in each of which an unknown density was replaced with a constant value. When calculating the finite part according to Adamar for the integrals in (5) across the quadrangle arbitrarily oriented in space, the formula obtained in [5] was used. The elements of the matrix of the additional masses were found by the formula

$$P_{ik} = \iint_{S} \Gamma_i(x) w_k(x) dS ,$$

where $\Gamma_i(x)$ are the amplitude values of the pressure induced by its eigenform $w_k(x)$. After determining the elements of the matrix of the additional masses, the eigenvalue problem can be solved according to the method developed in [5, 10].

Investigation of the vibration frequency spectra of the head covers for the Π J 20-B-500 turbines, taking into account the influence of a liquid

The design of the head covers for the $\Pi \Pi$ 20-B-500 turbines in service consists of bodies of revolution and a system of multiply-connected meridional plates (Fig. 1).

For calculations, the mechanical properties of materials were used in accordance with the data given in [11-13].

For grey cast iron Cu20 it was assumed that the modulus of elasticity $E = (0.8 \div 1.2) \times 10^5$ MPa, the Poisson ratio $v = 0.21 \div 0.25$, the tensile strength $\sigma_{\rm B} = 210$ MPa, the material density $\rho = 7,100$ kg/m³.

For steel CT3 the modulus of elasticity $E = 2.1 \times 10^5$ MPa, the Poisson ratio v = 0.3, the tensile strength $\sigma_B = 380$ MPa, the material density $\rho = 7,800$ kg/m³ were considered.

The calculation of the eigenfrequencies of the head cover vibrations was carried out for two variants of fixation, imitating, depending on the tightening force of the fasteners, a possible contact of the head cover flange surface with the stator surface: resting along the line of its fastening to the stator with studs ($u_r = 0$, $u_z = 0$, $u_{\varphi} = 0$) and a rigid fastening of the flange cover to the stator ($u_r = 0$, $u_z = 0$, $u_{\varphi} = 0$).

The eigenfrequencies and vibration modes were calculated, taking into account the masses of the turbine parts and units placed on the head cover (added masses of the parts): the regulating ring $(G_{reg r} = 5,365 \text{ kg})$, half of the stator shackles $(G_{sh} = 366 \text{ kg})$, half of the pins of the of the stator $(G_{pin} = 96 \text{ kg})$, the rod $(G_{rod} = 495 \text{ kg})$, guide bearing $(G_{gd brg} = 114,690 \text{ N})$, the turbine shaft $(G_{turb sft} = 23,220 \text{ kg})$, the generator rotor $(G_{gen rtr} = 137,650 \text{ kc})$, the shaft extension $(G_{sft ext} = 900 \text{ kg})$, the exciter rotor $(G_{exc rtr} = 5.160 \text{ kg})$, the thrust block $(G_{thr bl} = 9,500 \text{ kg})$, the thrust $(G_{thr} = 2,800 \text{ kg})$, the cowl cone $(G_{cc} = 11,469 \text{ kg})$.

The design diagram of the $\Pi \Pi 20$ B-500 turbine head cover is shown in Fig. 2. The values of the masses of the parts and units located on the turbine head cover (Fig. 2) are as follows:

$$G_{2} = G_{reg r} + \frac{1}{2} G_{sh} + \frac{1}{2} G_{pin} + G_{rod} = 6,322 \text{ kg};$$

$$G_{3} = G_{gen rtr} + G_{turb sft} + G_{sft ext} + G_{exc rtr} + G_{thr bl} + G_{thr} = 247,330 \text{ kg};$$

$$G_{4} = G_{cc} = 1,469 \text{ kg}.$$

The additional masses of the parts G_i (i = 2, 3, 4) are uniformly distributed over the annular portions of the head cover as shown in Fig. 2.

The influence of mass forces is taken into account by adjusting the density of the head cover sections along the boundary of their application [14]. The material densities for the primary discretization zones of the head cover 1, 2, 3, 4 and the body of revolution -1, -2, -3, -4 (Fig. 2) are given in Table 1.

ISSN 0131–2928. Проблеми машинобудування, 2018, Т. 21, № 1

The eigen and forced vibrations of both the head cover in service and the new steel cover made of materials with different elastic characteristics, namely of steel CT3 ($E = 2.1 \times 10^5$ MPa, v = 0.3), cast iron '1' ($E = 0.8 \times 10^5$ MPa, v = 0.3), cast iron '2' ($E = 1.2 \times 10^5$ MPa, v = 0.21), were calculated both in a vacuum and in liquid.

The influence of the additional liquid masses on the eigenfrequencies of the head cover was investigated both in a vacuum and liquid, with the head cover resting on the stator along the line of the head cover fastening. The results of the calculations are given in Tables 2 - 4.

Table 1. Densities of materials of primary discretization zones of head cover

Zone sign	<i>G</i> _{<i>i</i>} , kg	<i>R</i> ₂ , m	<i>R</i> ₁ , m	F_i , m ²	h_i , m	$\rho_i = \frac{G_i}{F_i \cdot h_i} + \rho_{-1}$
						ρ_i , kg/m ³
1, 2, 3, 4	_	_	_	_	_	steel 7,800 / cast iron 7,100
-1	—		_	_	_	steel 7,800 / cast iron 7,100
-2	G ₂ =6,322	1.925	1.760	1.91017	7.0	5,513 / 5,438
-3	G ₃ =24,7330	1.710	1.470	2.39766	7.0	14,814.9 / 14,807.4
-4	G ₄ =11,469	1.568	1.200	3.20010	6.0	6,753 / 6,683

Table 2. Eigen vibration frequencies of steel cover (Cm3), taking into account additional masses of parts, resting

Harmonia number VE	Madium	Vibration frequency, Hz			
Harmonic number, KF	Medium	1	2	3	
0	vacuum	29.341	94.941	179.621	
	liquid	29.102	94.925	173.978	
1	vacuum	23.169	49.471	101.569	
	liquid	23.068	49.405	101.545	
2	vacuum	23.142	68.512	134.764	
	liquid	23.032	68.420	133.440	

Table 3. Eigen vibration frequencies of cast iron cover (cast iron '1'), ta	taking into account additional masses of parts, resting
---	---

Hormonio numbor KE	Madium	Vibration frequency, Hz			
Harmonic number, KF	Medium	1	2	3	
	vacuum	15.328	50.373	128.097	
0	liquid	15.186	50.365	114.879	
1	vacuum	12.539	25.419	53.460	
1	liquid	12.477	25.385	53.454	
2	vacuum	12.687	36.695	69.340	
Z	liquid	12.620	36.651	69.198	

ДИНАМІКА ТА МІЦНІСТЬ МАШИН

Hormonic number VE	Madium	Vibration frequency, Hz			
Harmonic number, KF	Medium	1	2	3	
0	vacuum	18.623	62.306	157.287	
	liquid	18.449	62.296	140.539	
1	vacuum	15.419	30.862	66.202	
1	liquid	15.342	30.823	66.193	
2	vacuum	15.606	44.853	85.848	
	liquid	15.523	44.803	85.726	

Table 4. Eigen vibration frequencies of cast iron cover (cast iron '2'), taking into account additional masses of parts, resting

The influence of the additional masses of the parts on the eigenfrequencies of the head covers was investigated both in a vacuum and in liquid. The results of calculating the eigenfrequencies of the vibrations of the cast iron head covers (cast iron '2') without taking into account the additional masses of the parts, with the head cover resting on the stator, are given in Table 5.

 Table 5. Eigen vibration frequencies of cast iron cover (cast iron '2'), without taking into account additional masses of parts, resting

Harmonia number KE	Madium	Vibration frequency, Hz			
Harmonic number, KF	Medium	1	2	3	
0	vacuum	108.324	287.873	351.912	
	liquid	80.388	225.678	317.934	
1	vacuum	78.852	176.833	250.943	
1	liquid	68.334	166.779	245.280	
2	vacuum	71.312	173.965	272.786	
	liquid	63.232	168.137	266.285	

The results of calculating the eigenfrequencies of the vibrations of the head covers, taking into account the additional masses of the parts, with the head cover fastened rigidly along the flange cover to the stator, are given in Tables 6 - 8.

Table 6. Eigen frequencies of vibrations of steel head cover (Cm3), taking into account additional masses of parts,
rigid fastening

Hormonic number KE	Madium	Vibration frequency, Hz			
Harmonic number, KF	Medium	1	2	3	
0	vacuum	31.303	103.008	181.841	
	liquid	31.093	102.977	175.425	
1	vacuum	26.435	51.617	108.212	
	liquid	26.314	51.567	108.189	
2	vacuum	24.997	76.546	135.258	
2	liquid	24.875	76.455	133.862	

 Table 7. Eigen frequencies of the vibrations of the cast iron head cover (cast iron '1'), taking into account the additional masses of the parts, rigid fastening

Harmonic number, KF	Madium	Vibration frequency, Hz			
	Medium	1	2	3	
0	vacuum	16.445	54.215	129.208	
0	liquid	16.301	54.211	114.652	
1	vacuum	14.297	26.401	56.607	
	liquid	14.222	26.376	56.604	
2	vacuum	13.606	40.672	69.801	
	liquid	13.532	40.634	69.619	

Hamman's number KE	Madinu	Vibration frequency, Hz			
Harmonic number, KF	Medium	1	2	3	
0	vacuum	20.016	66.994	158.763	
	liquid	19.839	66.989	140.239	
1	vacuum	17.578	32.031	70.076	
	liquid	17.485	32.003	70.072	
2	vacuum	16.732	49.613	86.521	
	liquid	16.641	49.572	86.323	

 Table 8. Eigen frequencies of vibrations of cast iron head cover (cast iron '2'), taking into account additional masses

 of parts, rigid fastening

Analysis of the results of calculating the forced vibrations of the head covers for the Π Л 20 B-500 turbines

The forced vibrations of the construction under harmonic loading in time are described by the equation [10].

$$\mathbf{K}\boldsymbol{u} - \boldsymbol{\omega}^2 \mathbf{M}\boldsymbol{u} = \boldsymbol{Q} \,, \tag{6}$$

where **K**, **M** – the stiffness matrix and the mass matrix of the structure, respectively; ω – frequency of vibrations; *u*, *Q* – time-varying displacement *t* vectors and external node load *t* vectors, respectively.

When solving the dynamics problem (6) by the finite element method, the method of direct integration and the displacement eigenfunction expansion method are usually applied [4, 5].

When using the direct integration method, we build the mass matrix M_{κ} and the rigidity matrix K_{κ} of the construction for any k^{th} harmonic of the expansion with respect to the vector of the amplitude values displacements u_{ik} , applying the developed finite element approach [4].

The dynamic stress-strain state of the head covers of the existing and the new design, made of materials with different elastic characteristics, was investigated under the action of hydrodynamic loads on the head cover at the maximum values of liquid pressure $H_{\text{max}} = 21$ m and power $N_{\text{max}} = 24.5$ MW.

In addition to the mass forces G_i (i = 2, 3, 4) and the hydrodynamic liquid pressure q_1 , acting on the liquid contacting surface of the head cover, the latter receives the hydrodynamic axial thrust Q_3 , acting on the impeller through the thrust block, and the hydrodynamic force Q_4 from the flow-washed cowl cone. The law of change in hydrodynamic pressure was accepted in the form of $q = q_i \cos(\omega t)$, where t is the time and ω is the loading frequency. The scheme of application of the acting dynamic loads is shown in Fig. 3.

The values of the dynamic loads q_i (i = 1, 3, 4) accepted during the calculation are given in table 9.

Load	Total hydrod	- MDa	
variant	$Q_{ m i},{ m N}$	Action area, m ²	$q_{\rm i}$, MPa
1	-	_	0.2100
3	$Q_{3.} = 3,500,000$	2.397664	1.4598
4	$Q_4 = 1,536,942$	3.200102	0.4803

Table 9. Dynamic loads

Depending on the frequency of loading, dynamic displacements as well as dynamic stresses are defined both as when the cover is supported along the circumference formed by the stude (option 1 – loading frequency $\omega_1 = 2.08$ Hz, option 2 – loading frequency $\omega_2 = 8.33$ Hz), and when the head cover is fastened rigidly onto the flange surface (option 3 – loading frequency $\omega_1 = 2.08$ Hz, option 4 – loading frequency $\omega_2 = 8.33$ Hz).

The discretization of the meridional section of the design model of the steel head cover on the finite elements for the investigation of the dynamic stress-strain state is shown in Fig. 4, which shows the nodes necessary for an analysis of dynamic displacements.

The values of the dynamic displacements of the steel cover, in the fixed mesh nodes of the finite elements, are shown in Table 10.

The values of the dynamic displacements of the cast iron head cover (cast iron '1'), in the fixed mesh nodes of the finite elements, are shown in Table 11.

ДИНАМІКА ТА МІЦНІСТЬ МАШИН

Table 10. Dynamic movements of steel cover depending on type of loading

No. of		Displacements in nodes ($u_r \times 10^3$, $u_z \times 10^3$), m						
variant of	Displacements	No. of nodal point						
loading		1	2	3	4	5		
1	u_r	0.000	-0.0042	-0.0052	0.0031	0.00315		
1	u_z	0.000	0.00098	0.0172,	0.0113	0.0201		
2	u_r	0.000	-0.0043	-0.0056	0.0035	0.00358		
2	u_z	0.000	0.00110	0.0185,	0.0125	0.0218		
2	u_r	0.000	-0.00424	-0.00478	0.00291	0.00297		
5	u_z	0.000	0.00044	0.0162	0.0104	0.0189		
4	u_r	0.000	-0.00430	-0.00516	0.00327	0.00335		
4	<i>u</i> _z	0.000	0.00046	0.0173	0.0115	0.0204		

Table 11. Dynamic movements of the cast iron head cover (cast iron '1'), depending on the type of loading

No. of		Displacements in nodes $(u_r \times 10^3, u_z \times 10^3)$, m No. of nodal point				
variant of	Displacements					
loading		1	2	3	4	5
1	<i>U</i> _r	0.000	-0.0134	-0.0014	-0.00309	0.00358
1	u_z	0.000	-0.01028	No. of nodal point 3 4 -0.0014 -0.003 0.0208 -0.001 -0.00284 -0.001 0.0271 0.004 -0.00237 -0.002 0.0232 -0.000	-0.00117	0.0145
2	u_r	0.000	-0.014	-0.00284	-0.00149	0.00191
Z	u_z	0.000	-0.00041	3 4 -0.0014 -0.00309 0.0208 -0.00117 -0.00284 -0.00149 0.0271 0.00463 -0.00237 -0.00269 0.0232 -0.00085 -0.00135 -0.00112 0.0291 0.00631	0.0224	
2	u_r	0.000	-0.0134	-0.00237	-0.00269	0.00316
5	u_z	0.000	0.00041	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.00085	0.0173
4	u_r	0.000	-0.014	-0.00135	-0.00112	0.00151
4	u_z	0.000	0.000534	0.0291	0.00631	0.0247

The values of the dynamic displacements of the cast iron head cover (cast iron '1'), in the fixed meshed nodes of the finite elements, are shown in table 12.

No. of		Displacements in nodes $(u_r \times 10^3, u_z \times 10^3)$, m No. of nodal point				
variant of	Displacements					
loading		1	2	3	4	5
1	u_r	0.000	-0.009460	-0.000979	-0.002140	0.00241
1	u_z	0.000	-0.000743	0.013600 -0	-0.001200	0.00925
2	u_r	0.000	-0.009670	-0.001540	-0.001500	0.00176
2	u_z	0.000	-0.000504	0.016000	-0.001500	0.01230
2	u_r	0.000	-0.009410	-0.001600	-0.001860	0.00213
5	u_z	0.000	0.000210	3 0.013600 -0.001200 0 -0.001540 -0.001500 4 0.016000 0.001060 0 -0.001600 -0.001860 0 0.015200 0.000133 0 -0.002050 -0.001230 0 0.017500 0.002300	0.000133	0.01110
4	u_r	0.000	-0.009640	-0.002050	-0.001230	0.00148
4	u_z	0.000	0.000260	0.017500	0.002300	0.01400

Table 12. Dynamic movements of the cast iron head cover (cast iron '2'), depending on the type of loading

The signs of displacement correspond to the direction of the *R*, *Z* axes (Fig. 4). For illustration, the level of dynamic stresses and the nature of their distribution along the meridional section of the head cover, depending on the characteristics of the material, fastening conditions and the loading frequency, is shown in Figs. 5 - 8.

The minimum σ_i^{min} and maximum σ_i^{max} values of the intensity of dynamic stresses in the cast iron head cover with different ways of fastening it, possible values of the elastic characteristics and excitation frequencies are given in Table. 13.

The minimum σ_i^{min} and maximum σ_i^{max} values of the intensity of dynamic stresses in the cast iron head cover with different ways of fastening it, possible values of the elastic characteristics and excitation frequencies are given in Table. 14.

Type of fastening	Frequency	Minimum stresses σ_i^{\min} , MPa	Maximum stresses σ_i^{max} , MPa
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	mode 1	
rigid along flange line	2.08	0.02240	6.205
ngid – along mange mile	8.33	0.02520	6.413
in points of resting along circumference formed	2.08	0.00849	6.210
by studs	8.33	0.01110	6.433

Table 13. The intensity of dynamic stresses in the steel cover

	•		
	Frequency	Minimum stresses σ ^{imin} , MPa	Maximum stresses σ ^{imax} , MPa
Type of fastening	ω_i , Hz	$E=0.8\cdot10^5$ MPa,	$E=1.2\cdot10^{5}$ MPa,
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	v=0.21	
migid along flangs ling	2.08	0.00170	0.00170
rigid – along hange line	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.00200	
in points of resting along circumference formed	2.08	0.01410	0.01763
by studs	8.33	0.01610	0.01305

Table 14. Dynamic stress intensity in cast iron head cover

Conclusions

1. The purpose of the investigation was to solve the problem of the possibility of replacing the cast iron cover of the Π J 20-B-500 turbine with the one of CT3 welded carbon steel sheet.

2. In a 3D formulation, the influence of the additional liquid masses of the structure on the eigenfrequencies is taken into account, using mathematical models based on hypersingular equations and a combination of finite and boundary element methods.

The investigation of design models of the head covers for the $\Pi \Pi 20$ -B-500 turbines, whose design features are determined by the composition, type, and size of the turbine, showed that the effect of a liquid on the eigenfrequencies is insignificant (see Tables 2 – 4 and 5 – 8). As the frequency number increases, the effect of a liquid decreases. At the same time, the eigenfrequency of the covers is significantly affected by the value of the additional masses of the parts and units placed on them.

The spectra of the eigenfrequencies of the cast iron and steel covers of the IIJ 20-B-500 turbines are shifted both relative to each other and the fixed revo-vane frequency $\omega_2=8,33$ Hz during full-scale tests. The detuning of the eigenfrequencies from the excitation frequencies of the steel head cover is higher than that of the cast iron one, which, considering the damping properties of the cast iron, is an important factor.

3. The conducted numerical investigation of the influence of both the material of the head covers and the conditions of fastening on their dynamic stress-strain state revealed that the level of dynamic displacements and stresses is insignificant and depends both on the fastening conditions and the loading frequency. The maximum values of dynamic stresses and displacements occur when the design model of the head cover is fixed along the circumference formed by the studs and the loading frequency $\omega_2 = 8.33$ Hz is fixed during full-scale tests. The maximum level of dynamic displacements in the steel head cover $u_z = 0.0218$ mm, in the cast iron one $u_z = 0.0224$ mm. The maximum dynamic stresses in the steel head cover $\sigma_i^{max} = 6.433$ MPa, while in the cast iron head cover $\sigma_i^{max} = 6.209$ MPa. When the turbine is operating, the dynamic deformations of both steel and cast iron head covers do not disrupt the operation of the shaft seal since the structural radial clearance between the head cover and the shaft seal housing Δ_r is 1.5 to 2.04 mm.

4. The conducted numerical investigations have confirmed the possibility of replacing the cast-iron head cover with the one welded from CT3 carbon steel sheets, as well as the necessity of tightening the flange connection of the head cover to the stator, which is one of the effective ways of increasing rigidity.

References:

- Kantor B., Strelnikova O., Medvedovska T., Rzhevska I., Yeseleva O., Lynnyk O., Zelenska O. Calculation of the Residual Resource of the Elements of the Flowing Section of HPS and HPSPP Hydro-Turbines. Methodological guidelines: normative document. SOU-N MEV 40.1 -21677681-51: 2011: approved by the Ministry of Energy and Coal Mining of Ukraine: effective as of 07.07.11. Kyiv: Ministry of Energy and Coal Mining of Ukraine. 76 p.
- 2. Eigenson S. N., Titov V. B. Experimental Study of the Stressed State of Ribs of Hydro-turbine Head Covers by the Polarization-Optical Method. *Power-plant Eng.* 1978. No 11. P. 11–14.
- 3. Veremeienko I., Zelenska O. Estimation of the Residual Resource of the Head Covers of Hydro-Turbines. *Eng.Sci.* 1999. No 12. P. 3–8.
- Veremeenko I., Zelenskaya O., Linnik A. Finite-element Analysis of Strength and Dynamic Characteristics of Large-Sized Supporting Structures of Hydraulic Turbines. *Perfection of Turbo-Units by Methods of Mathematical and Physical Modeling*: Tr. Intern. Scientific-Techn. Conf. (Kharkov, 12-16 Sept. 2000), Kharkov, 2000. P. 502–508.
- Medvedovskaya T., Strelnikova E., Medvedyeva K. Free Hydroelastic Vibrations of Hydroturbine Head Covers. Intern. J. Eng. and Advanced Research Technology (IJEART). 2015. Vol. 1. No 1. P. 45–50. DOI 10.13140/RG.2.1.3527.4961
- Degtyarev K., Glushich P., Gnitko V., Strelnikova E. Numerical Simulation of Free Liquid-Induced Vibrations in Elastic Shells. *Intern. J. Morern Physics and Appl.* 2015. Vol. 1. No 4. P. 159–168. DOI 10.13140/RG.2.1.1857.5209
- 7. Gnitko V., Naumenko V., Rozova L., Strelnikova E. Multi-domain Boundary Element Method for Liquid Sloshing Analysis of Tanks with Baffles. *J. Basic and Appl. Research Intern.* 2016. Vol. 17. No 1. P. 75–87.
- Avramov K. V., Strelnikova E. A. Chaotic Oscillations of Plates during Their Two-Way Interaction with the Flow of a Moving Fluid. *Appl. Mech.* 2014. Vol. 50. No 3. P. 86–93. DOI: 10.1007 / s10778-014-0633
- 9. Naumenko. V. V., Strelnikova H. A. Singular Integral Accuracy of Calculations in Two-Dimensional problems. *Eng. analysis with boundary elements.* 2002. No 26. P. 95–98. DOI: 10.1016 / S0955-7997 (01) 00041-8
- Veremeyenko I. S., Kantor B. Ya., Medvedovskaya T. F., Rzhevskaya I. E., Andryushchenko S. A. Strength, Dynamics of the Bearing Structures and Impellers of Radial-Axial Hydro-Turbines. *Aerospace Eng. ring and Techn.* 2005. No 9/25. P. 97–101.
- 11. Troshchenko V. T., Lebedev A. A, Strizhalo V. A, Stepanov G. V, Krivenyuk V. V. Mechanical Behavior of Materials under Various Types of Loading. Kiev: Logos, 2000. 571 p.
- 12. Birger I. A., Shorr V. F., Iosilevich G. B. Strength Design of Machine Components. Reference book. Moscow: Mech. Eng., 1979. 702 p.
- 13. Troshchenko V. T., Sosnovsky L. A. Fatigue Resistance in Metals and Alloys. Reference book: in 2 parts. Kyiv: Nauk. Dumka, 1987. Part. 504 p.; Part 2. 1302 p.
- Medvedovskaya T. F., Medvedeva E. L., Linnik A. V., Zelenskaya O. N. Analysis of the Static and Dynamic Strength of the Head Cover of a Reversible Hydraulic Machine. *Electrical Energy Industry and Electrical Eng:* PROMELEKTRO. 2017. No 1. P. 22–26.
- 15. Bate K., Wilson E. Numerical Analysis Methods and the Finite Element Method. Moscow: Stroyizdat, 1982. 448 p.

Received 20 November 2017