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MODERNIZATION OF AN EXPERIMENTAL 
INSTALLATION AND A PROCEDURE FOR 
INVESTIGATING THE ANISOTROPIC 
VISCOELASTIC PROPERTIES OF COMPOSITE 

MATERIALS AT ELEVATED TEMPERATURES 

The paper describes the process of modernizing the existing installation designed 

for performing long-term tests of steel and aluminum cylindrical specimens for 
high-temperature creep. The modernization allowed conducting experimental 

studies of the anisotropic strength and viscoelastic characteristics of planar com-

posite specimens at elevated temperatures. In order to reach the objective set, a 

scheme for reconstructing the specimen holders in the experimental installation 

was proposed, as well as the method of fixing them in the installation. The devel-

oped, designed and built automatic temperature control block for the electric 

furnace allowed maintaining elevated temperature with a sufficiently small error 

during its long use and controlling the heating temperature in a given range, 

which was necessary for studying the mechanical properties of composite speci-

mens, as well as regulating the heating temperature in a given range. Conducting 

the experimental study of the instantaneous and long-term mechanical properties 
demonstrated the effectiveness of the improvements made for the experimental 

installation, as applied to the realization of such experiments. 
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Introduction 
Fiber-reinforced polymeric composite materials (FRPCM) are used in automobile, aerospace, and 

heavy industries as well as in general consumer goods production [1, 2]. 

During operation, composite elements of structures and installations are subjected to the influence of 

elevated temperatures and high levels of stress. Since they are usually thin-walled elements, in order to main-
tain their performance, it is important to accurately calculate their behavior under the influence of variable tem-

peratures and high loads [3–5]. 

Thus, the study of the mechanical properties of composite materials is an actual task at the moment, as 
modeling the mechanical behavior and determining the strength of the composite elements of installations is 

extremely important in their design. 

Due to the presence of directed reinforcing fibers, the mechanical properties of composite materials are 

anisotropic. Furthermore, the properties of the polymer matrix of FRPCM are very sensitive to temperature 
changes [6], especially when passing through the glass transition temperature – a temperature value, above which 

a polymer changes its microstructure and the shape of its molecules becomes mobile under the influence of exter-

nal loads [7]. This leads to the appearance of both the effect of elasticity (i.e., a linear change of body strains under 
the influence of loads due to changes in intermolecular distances) and the phenomenon of viscoelasticity – the 

process of strain growth over time under constant stresses and stress relaxation over time under constant strains 

[8]. Linear viscoelasticity is characterized by an integral proportionality between stresses and strains, and is also a 
reversible process – when loads are removed, the viscoelastic strains will return to the initial level over time [9]. 

The experimental investigation of quasi-static viscoelastic properties was performed for the planar load 

of a satin fabric carbon/epoxy composite in [10], for the interlaminar shear modulus of laminated composites in 

[11], for Prony series moduli and relaxation times as well as the temperature shift function of epoxy compounds 
in [12], for the creep properties of an epoxy adhesive in [13], for the planar orthotropic viscoelastic properties 

of a glass fabric composite at elevated temperatures in [14], for the viscoelastic compression parameters of 

filled rubber in [15], for the dependency of the reinforcement of exfoliated graphene oxide nanoplatelets on the 
mechanical and viscoelastic properties of natural rubber in [16], for the isotropic viscoelastic response of the 

woven composite in [17]. In [18] volumetric experiments on the viscoelasticity of an adhesive between compo-
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site and metal elements were provided. In [19] the viscoelasticity analysis and the experimental validation of 

anisotropic composite overwrap cylinders allowed the authors to adequately model such type of systems. 
Therefore, the investigation of anisotropic viscoelastic properties of FRPCM is a complex engineer-

ing problem. Its solution requires that, firstly, stretch experiments be performed on composite specimens cut 

in different directions, their number  depending on the degree of anisotropy of the mechanical properties; 
secondly, the specimens be fixed in the experimental installation properly in order to avoid undesirable de-

formations in holders; thirdly, the specimens be heated by a homogeneous and time-invariant temperature 

field, and, fourthly, viscoelastic deformations be measured accurately over a sufficiently long period of time. 

Thus, at present, the development of an experimental equipment and the study of anisotropic viscoe-
lastic properties of FRPCM at elevated temperatures is an actual engineering and scientific task. 

1. Description of the AIMA 5-2 experimental installation 

Fig. 1 presents the schematic diagram of the AIMA-5-2 experimental installation, that was used for 
conducting the experiment. 

For the initial design of the installation the test specimen 12 is fixed with threaded ends in the grip-

pers 3 and 11. The lower gripper 3 is connected to the upper part of the power screw 2 of the power reducer.  

When disengaged, the power reduc-
er is manually rotated by the hand-wheel 1, 

which is necessary when installing a speci-

men or quickly unloading specimens, for 

example, during a prolonged voltage de-
energizing and specimen cooling. 

While the worm-wheel of the power 

reducer is being rotated, the lead screw 2 
moves up and down. The movement of the 

screw within 70 mm is limited by the limit 

switch. The upper gripper 11 is connected to 

the ball-joint suspension, which is the final 
link of the three-lever loading device consist-

ing of the power lever 5, intermediate lever 7, 

and the weight lever 10. The levers are con-
nected with each other by means of earrings 6. 

The weight lever 10 has the load holder 9 at-

tached to it, which is necessary for the opera-
tion of the lever system with the arm ratio of 

1:100. The weight lever is connected to the 

horizontal pointer of the levers 4, which is lo-

cated on the face side of the installation. The 
total gear ratio of the lever system is 100:1 (the 

power lever is 8:1, the intermediate lever is 

5:1, and the weight lever is 2.5:1). Each of the 
levers is balanced by its counterweight. The 

test specimen is placed in the electric furnace 

13, providing the required test temperature. 
The installation allows the testing of 

specimens in the load range from 50 to 

400 N in the direct loading mode. In this 

case, a special traction with a gripper is at-
tached to the lower end of the specimen. 

 

Fig. 1. Schematic diagram of  the AIMA-5-2 experimental 

installation [20] 

2. Preparation of specimens for conducting the experiment 

The composite material under consideration is a combination of epoxy resin and long E-glass directed 

fibers [21, 22]. The orthogonal weaving scheme of the material provides high strength properties of thin shells  
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made of this material, which are subjected to stretching or 

bending forces while preserving its light weight (approx-

imately one-quarter of the analogous value for steel). At 
the same time, this composite material is not so strong as 

сarbon fiber-reinforced polymer due to the weaker me-

chanical properties of glass fibers, but it is much cheaper 
owing to the lower price of their production in compari-

son with that of carbon fibers. 

The generalized mechanical properties of epoxy 

resin and E-glass fibers are presented in papers [23–24] 
and [25–26], respectively. 

Fig. 2 shows workpiece forms for producing spec-

imens from glass-fiber reinforced plastic. Fig. 2, a shows the 
cutting scheme for producing experimental specimens pre-

sented in Fig. 2, b. Thus, each row of specimens was cut in 

its own direction from one large plate. 
The polymer nature of epoxy resin matrix causes 

the appearance of the phenomenon of viscoelasticity [27]. 

The viscoelastic properties of FRPCM are not so noticeable 

at room temperature during the observable periods of time, 
but a relatively small increase in temperature up to 100°C 

shortens these periods to days, hours and even minutes. 

Thus, the experiments on the viscoelastic properties 
of FRPCM need to be conducted at elevated temperatures, 

which needs to be maintained for a long period of time. 

 
a 

 
b 

Fig. 2. Glass fiber reinforced composite material: 

a – cutting scheme; b – cutout specimen workpieces 

The preparation of specimens was performed according to the standard of the American Society for 

Testing and Materials D618 [28]. The procedure A was chosen as an adequate kind of preparation for the cur-
rent testing purposes. 

The geometry of the specimens was designed according to ASTM D638 standard [29]. Fig. 3 illustrates 

2 mm thick ready-made specimens. 

The specimens contain holes with diameters of 4 mm at their ends in order to provide their assembling 
in the testing installation. After the assembly, the ends of the specimens were tightened by the grippers in order 

to avoid the stress concentrations around the holes and provide the full fixation of the specimen ends. 

 

Fig. 3. Experimental specimens 
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3. Modernization of the mechanical part of the experimental installation 

The AIMA 5-2 experimental installation was developed for testing cylindrical metal specimens, 
meant to be fastened with threaded connections. To study the mechanical properties of the composite materi-

al, it was necessary to develop a fasteners for flat specimens, which would ensure the pinching of their ends. 

Such fasteners were developed on the basis of steel cylindrical specimens with threaded ends. Figure 4 illus-
trates the process of assembling flat composite specimens in modernized grippers. 

First, a specimen will be fixed in the initial position by means of both the holes at its ends and the 

pins on the halves of the grippers, as shown in Fig. 4, a. Then the other halves of the threaded fasteners will 

be put on the pins, as shown in Fig. 4, b. Finally, a measuring frame will be attached to the thread from two 
ends of the specimen, the other ends of the frame containing indicating gauges that must measure the relative 

movement of the grippers. The measuring frame will be tightened on the specimen ends, using four bolts and 

nuts, as shown in Fig. 4, c. As a result, the effect of tightening the grippers along the lateral surfaces of the 
specimen ends will be achieved, that is, it will become pinched between the two grippers, as required by the 

procedure for performing experiments on flat composite specimens. 

 
a 

 
b 

 
c 

Fig. 4. Process of installing specimens in the modernized gripper: 

a – first stage; b – second stage; c – third stage 

4. Automatic temperature control block for the electric furnace 

The automatic temperature control block for the electric furnace (ATCBEF), whose general view is 
shown in Fig. 5, is designed according to the structural scheme shown in Fig. 6. 

As temperature sensors, semiconductor thermistors with a negative temperature coefficient of re-

sistance (TCR) are used in the automatic control block. The reason for refusing to use traditional temperature 

sensors with bimetallic plates was both their low accuracy of operation and significant inertia as temperature 

regulators within the given operating temperature range of 75°С125°С. 
The operation of the ATCBEF is carried out by the method of two-position regulation of the average 

power of the electric furnace, which is necessary in order to maintain the preset temperature in its working cham-

ber. Under the experimental conditions, the insensitivity zone is set at ±0.5°C. The width of this zone is due to the 
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Fig. 5. General view of the ATCBEF 

 

Fig. 6. Structural scheme of the ATCBEF 

dynamic delay of semiconductor tem-

perature sensors introduced by their 

metal protective covers filled inside 
with a non-conductive thermal paste, 

as well as by their tubular metal hold-

ers. The time lag is about 25 seconds. 
The main measuring element of 

the automatic temperature control block 

is a dual amplitude discriminator im-

plemented on an LM-311 integral com-
parator. Comparators switch the values 

of the output voltage depending on the 

input signals exceeding the preset levels. 
There are two such levels in the auto-

matic control block: 

− the operating temperature 
level of the electric furnace; 

− the limit temperature level 

of the electric furnace.  

These levels are formed un-
der the influence of the temperature 

field by the operating and limiting 

measuring bridges, respectively, due 
to the thermistors included in them. 

The preliminary balancing of the 

measuring bridges connected to the 

comparator inputs is used to set the 
working and limiting temperatures of 

the electric furnace. 

Connected to the output of the 
dual amplitude discriminator, the con-

trol signal conditioning block (CSCB) 

is essentially a logical device that im-
plements the logical OR-NOT opera-

tion with a negative result. Thus, in a 

hardware implementation, the output 

signal of the CSCB, that opens the 
thyristor switch block (TSB), is 

formed if the set temperature threshold 
is not exceeded in relation to either the operating or limiting temperature. A similar control function is per-

formed by the emergency shutdown unit (ESU) blocking the passage of the start signal to the TSB in the 
event of receiving a command signal from the magnetically controlled overload sensor located in the net-

work interference filter unit (NIFU). 

In addition, it should be noted that in order to reduce the value of the oscillations of the operating 
temperature of the automatic control block and shorten the time for the initial start-up, a stepwise switching 

mode of  the electric furnace heating element  is realized. So, immediately after the ATCBEF is switched on, 

all three parts of the heating element connected in parallel to the single-phase AC 220V network are involved 

in the operation. After the operating temperature of the electric furnace reaches the set value and after it is 
turned off by the CSCB signal, the TCB transfers the three parts of the heating element to the serial power 

mode, which does not change until the next restart of the entire ATCBEF. 

To ensure the stable uninterrupted operation of the ATCBEF under the influence of various types of 
interference over the AC mains power supply network, the NIFU is included into the ATCBEF. The electri-
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cal circuit of this filter includes passive inductive and capacitive elements in the form of chokers with coun-

ter and cumulative winding, high-voltage non-polar capacitors, as well as a voltage surge limiter – a varistor. 
The two-stage interference filter built on the inductive and capacitive elements provides suppression of high-

frequency in-phase network interferences at the level of 96 dB and the limitation of single voltage surges 

over 240 V. In addition, for an organization of a high-speed protection of the ATCBEF against overload and 
short circuits, the NIFU circuit has an X791151 chip-based magnetically controlled electronic switch, the 

chip output being connected to the second input of the ESU, as shown in Fig. 6.  

The main technical characteristics of the developed and created ATCBEF designed for experimental 

studies of the strength characteristics of laminated fiberglass specimens, are given below. 
− Mean power consumption  10 W 

− Supply voltage of the unit 220 V 

− Maximum power of the electric furnace (in the primary heating mode) 3.9 kW 
− Electric furnace power in the operating mode 1.3 кW 

− Operating voltage of the electric furnace 100 V 

− Range of maintained temperatures in the electric furnace 70÷130°С 

− Time interval for entering the operating mode 15÷20°min. 
− Amplitude of temperature pulsations in the electric furnace ±0.2°С  

− Limiting temperature of the electric furnace 150°С 

− Threshold load current value of the unit (in the emergency mode) 20 A 

5. Procedure for conducting the experimental investigation 

The procedure and details of a series of experiments was planned according to the ASTM standards [29–31]. 

The specimens were cut out from a 2 mm thick single composite plate in the directions of 0°, 45° and 
90°, which is shown in Fig. 2, a. They were loaded in the direction of their long side. Depending on the cutting 

direction, the process resulted in one of the three states, shown in Fig. 7. 

 

Fig. 7. Scheme of specimen loading 

Such loading schemes allowed obtaining the planar mechanical properties of the composite material. 
Determination of the mechanical properties in the third direction (at right angles to the plane of a plate) re-

quires tensile or compressive tests in these directions, which is difficult to implement. However, while mod-

elling the mechanical behavior of thin composite plates and shells subjected to tensile and bending forces, 
there is only a need in the planar properties. 

Fig. 8 shows the general view of the experimental installation. The specimen I is fixed in the grip-

pers II while the heating element (the electric furnace) III is positioned around it. The relative displacement 

of the grippers is measured by two indicating gauges IV, and the temperature constancy is controlled by the 
sensor V. The heating element provides a smooth rise of the temperature up to 100°C maintaining it within 

the range of no more than ±2°C, as required in the ASTM standard D2990 [30]. 

To check the specimens for the correctness of pinching, they were loaded until their fracture, as 
shown in Fig. 9 for the specimens cut out at the angles of 0° and 45° to the first reinforcement direction, re-

spectively. As can be seen from figs. 9, a and 9, b, the fracture occurs in the working part of the specimens, 

which indicates the effectiveness of the developed grippers. 
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a 

 
b 

Fig. 8. Experimental installation:  

a) – general view; b) – view of the grippers 

 
a 

 
b 

Fig. 9. Fracture of the specimens: 
a – specimen cut out at the angle of 0° to the fiber orientation;  

b – specimen cut out at the angle of 45° to the fiber orientation 
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As a result of the experimental studies, the required graphs were built (Fig. 10): the stress-strain dia-

grams in different directions (Fig. 10, a) and the creep curves for different load levels (Fig. 10, b). 

 
a 

 
b 

Fig. 10. Diagrams built using the experimental installation:  

a) – stress-strain diagram; b) – creep curves 

After carrying out a series of experiments, it was established that the obtained results were highly re-
peatable, they were adequate for the specific effects of the considered ATCBEF, and the developed experi-

mental technique was applicable to determining the mechanical properties of other ATCBEF types due to a 

sufficient range of possible loads applied to the specimens by means of the experimental installation and the 
temperatures realized with the help of the modernized electric heater. 

Conclusion 

As a result of modernization, the experimental installation was adapted to perform studies of the high-

temperature viscoelasticity of planar composite specimens. The modified grippers ensured the effective fas-
tening of the specimens, which was confirmed by the experiments on their rupture. The developed ATCBEF, 

owing to the ability to maintain a constant temperature within the range of ±0.5°C allowed meeting the re-

quirements of standards for maintaining the temperature regime when studying the mechanical properties of 
composite materials. The cut out specimens ensured a sufficiently accurate determination of the working part 

deformations, as a result of which the stress-strain and creep diagrams of the ATCBEF were built. 
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