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FIRST BASIC ELASTICITY THEORY PROBLEM 
IN A HALF-SPACE WITH SEVERAL PARALLEL 

ROUND CYLINDRICAL CAVITIES 

A three-dimensional problem of the theory of elasticity is calculated, when a voltage is 

specified in an elastic half-space on the boundaries of parallel cylindrical cavities and 

on the boundary of a half-space. The solution is obtained by the generalized Fourier 

method relative to a system of the Lame equations in the cylindrical coordinates asso-

ciated with the cylinders and the Cartesian coordinates related to the half-space. An 

infinite system of linear algebraic equations, to which the problem is reduced, is solved 

by the truncation method. As a result, displacements and stresses in an elastic body are 

found. Numerical results are presented for the case of a half-space and two cylinders. 

Keywords: cylindrical cavities in a 

half-space, Lame equations, 
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Introduction 

When designing different kinds of structures in rock and geotechnical mechanics, one has to know the 

stress-strain state of a half-space with cavities if loads are specified on the boundaries of the cavities and the half-
space. Such information can be obtained by solving the relevant elasticity theory problem. Presently there are no 

ready-made solutions to such problems for a spatial variant, and hence, the problem of solving them is actual. 

Review of publications 
Spatial (3-dimensional) elasticity theory problems for bodies bounded by canonical surfaces (second-

order surfaces: cylinder, cone, sphere, ellipsoid, paraboloid, and others) were investigated in [1–4]. The exact 

solutions in those studies were obtained exclusively by using both the method of separation of variables and the 

Fourier method. Problems for elastic bodies with several boundary surfaces cannot be solved within a classical 
framework. Such problems required that the generalised Fourier method [5–8] be used. That was why the ap-

proach to solving the problem indicated in the title of this paper was developed on that very method. 

This article is a continuation of the author's work: the first basic problem for space with round cylin-
drical cavities, based on the generalised Fourier method, was considered in [9]. A mixed problem for space 

with cylindrical cavities, when displacements are specified on the boundaries of some parallel cylindrical 

cavities; stresses on others; tangential forces and displacements on third ones, is considered in [10]. In this 

work, unlike the author’s previous ones, a half-space is considered. In studies [11–15] the generalised Fouri-
er method was also used for transversely-isotropic bodies bounded by coordinate surfaces in cylindrical and 

parabolic coordinates with a force applied to a half-space boundary. Paper [16] considered the first basic 

problem in the theory of elasticity for a half-space with one cylindrical cavity and the following conditions 

on the half-space boundary     0,cos  yzyxy zxf . 

Objective of the paper- 

The objective of this paper is to analyze the stress-strain state of a half-space with several cylindrical 
cavities parallel both to each other and the half-space boundary, as well as their mutual influence. To achieve 

this objective, the generalised Fourier method is used. The problem is being considered for the first time. 

Problem statement 
An elastic homogeneous half-space has N number of round cylindrical parallel cavities non-intersecting 

each other and the half-space boundary. The cavities will be considered in the cylindrical system of coordinates 

( zpp ,, , where p is cylinder number) and the half-space − in the Cartesian reference system (x, y, z), which is 

oriented identically and linked to the system of coordinates of the cylinder with number p=1. The half-space 

boundary is located at distance y=h, with the equalities for the half-space boundary Sd: y=h, and those for the sur-

faces of cylinders: Sp: pp R . Stresses are specified both on the half-space boundary and on the boundaries of 

the cavities which are assumed to decay rapidly to zero far from the origin of coordinates. One has to find a solu-
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tion to the Lame equation   0div21
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  provided that the stresses  zf pp ,


 are specified on the 

boundaries of cylindrical cavities,  zNp pp ,,;...,,2,1   ρ is a system of local cylindrical coordinates, and 

the stresses  zxfd ,


 are specified on the half-space boundary. The vectors  zf pp ,


 and  zxfd ,


 are assumed to 

decay rapidly to zero along coordinate z far from the origin of coordinates. 

Method of solution 
In the given systems of coordinates, we take the basic solutions to the Lame equation: 
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where  zyxM d ,,  is a point in space in the Cartesian reference system linked to a half-space;  zM ppp ,,  

is a point in space in the cylindrical system of coordinates linked to the p-th cylinder;    3,2,1, je k
j


 are the unit 

coordinate vectors of the Cartesian (k=1) and cylindrical (k=2) systems of coordinates;   is the Poisson ratio; 

 mI ,  mK  are the modified Bessel functions; )3,2,1(,, ,, kSR mkmk


 are respectively the internal and ex-

ternal solutions  to the Lame equation for a cylinder;    
kk uu


,  are solutions  to the Lame equation for a half-space. 

The solution is presented as follows: 
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where  ;, pmk MS


 and    ,;dk Mu


 are the basic solutions specified by the formulas (1) and (2), and the 

unknown functions  ,kH  and 
   p

mkB ,  are to be found from the edge conditions. 

 

Fig. 1. A half-space with cylindrical cavities  



ДИНАМІКА ТА МІЦНІСТЬ МАШИН 

ISSN 0131–2928. Проблеми машинобудування, 2018, Т. 21, № 2 14 

The following formulas are used for transition between the coordinate systems (Fig. 1): 

– for transition from the coordinates of cylinder with number p to the half-space coordinates 
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– for transition from the half-space coordinates to the coordinates of cylinder with number p  
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– for transition from the coordinates of cylinder with number p to the coordinates of the cylinder q  
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Having satisfied the edge conditions on the boundary Sq of the cylinder q in the solution (3), we re-

write   dk Mu 
 in the system of coordinates of the cylinder p=q using the formulas (5). For each cylinder 

pq, we rewrite  ;, pmk MS


 using the formulas (6). Taking into account the basic solutions (2) for the cyl-

inder p=q, for this equation we apply the stress operator 
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where n


 is unit normal vector to surface Sq; G is shear modulus;   is the Poisson ratio. This yields the equa-

tion for  ,sH  and 
   p

msB ,  on the cylinder q, which we designate as 
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Satisfying the edge conditions on the boundary of the half-space Sd in the solution (3), we use the 

formulas (4) to rewrite  ;, pmk MS


 for each cylinder in the half-space system of coordinates. Taking into 

account the basic solution for a half-space (1), we apply to this equation the stress operator (7) to obtain 

equations for  ,sH  and    p
msB ,  in the half-space, which we denote as  
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We free (9) from integrals and series, and find the expression for  ,sH . Having freed (8) from inte-

grals and series, we substitute it into the expression for  ,sH . This yields a vector equation. If now we pro-

ject this vector equation onto the axis of coordinates, this will yield a set of 3·N infinite systems of algebraic 

equations for    p
msB , . For the systems obtained, one can prove their unique solvability. Moreover, one can solve 

these systems, using the truncation method, and converge approximate solutions to an exact one [16]. The un-

knowns    p
msB ,  found from the systems of equations are substituted into (9) to yield the unknowns  ,sH . 

Numerical results for two cylinders 

We have two parallel cylindrical cavities in a half-space (Fig. 1). The space is an isotropic material, the 

Poisson ratio σ=0.35, the elasticity modulus 2cm/kN2E . The half-space boundary is located hRpqp   

from the cylinder q. On the cylinder boundaries, the stresses     0 
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The obtained infinite system of equations was reduced to a finite one for the parameter m – system 
order (the parameter m is investigated in [14]), the integration limits for the given function having been taken 

from -1 to 1. The integrals were calculated using the Philo and Simpson quadrature formulas. The accuracy 

achieved to satisfy the boundary conditions due to these parameters was brought to 10-4. 
To analyze the mutual influence of the half-space and cylindrical cavities, 6 variants of geometric 

parameters were calculated. 

Variant 1. Cavity radius Rp=50 cm, cavity radius Rq=10 cm, αqp=3π/2, h=40 cm. Fig. 2 shows normal 

stresses in the bridges: in fig. 2, a – between the cylinder q and the half-space boundary, and in fig. 2, b – between 
the cylinders. Fig. 2, a depicts the graph of normal stresses in the bridge between the cylinder q and the half-space 

boundary, whence it can be seen that in moving away from the half-space to the cylinder, the stresses   and   

decrease gradually, and in the end   and z  become tensile ones. Fig. 2, b shows that, from the cylinder q to the 

cylinder p, the stresses   and z  first decrease and then, as a result of the space being weakened by the cavity p, 

they increase and on the boundary of the cylinder p become even greater than on that of the cylinder q, the stress 

  in this interval, due to redistribution of stresses, demonstrating a slight increase. 

Variant 2. Cavity radius Rp=30 cm, cavity radius Rq=10 cm , αqp=0, h=40 cm. Normal stresses in the 

bridges are shown in fig. 3. In this case, the cylindrical cavity p is located on the horizontal axis together 
with the cylinder q and, as compared to the first variant, has no effect on the stress in the bridge between the 

cylinder q and the half-space boundary (Fig. 3, а). The stresses between the cylinders (Fig. 3, b) decay as 

they approach the cylinder p. 
Variant 3. Cavity radius Rp=10 cm, cavity radius Rq=10 cm, αqp=3π/2, h=40 cm. Normal stresses in 

the bridge are shown in fig. 4. 

As compared to variant 1, the radius of the cylinder p is reduced, which affected the stresses in the bridge 

between the cylinders (Fig. 3, b): on the cylinder q both   and z  increased; on the cylinder p they decreased, 

and   increased, becoming more pronounced. 
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a        b 

Fig. 2. Normal stresses for the cylinder q in the bridges in plane z=0: 

а – between the cylinder q and the half-space boundary; b – between the cylinders 

 
a        b 

Fig. 3. Normal stresses for the cylinder q in the bridges in plane z=0: 

а – between the cylinder q and the half-space boundary; b – between the cylinders 

 
a        b 

Fig. 4. Normal stresses for the cylinder q in the bridges in plane z=0: 

 а – between the cylinder q and the half-space boundary; b – between the cylinders 

Variant 4. Cavity radius Rp=10 m, cavity radius Rq=10 m, αqp=3π/2, h=20 m. Normal stresses in the 
bridges are shown in fig. 5. 

As compared to variant 3, both the distance between the cylinder q and the half-space as well as  that be-

tween the cylinders decreased, which had a substantial effect on the stresses between the cylinder q and the half-

space boundary (Fig. 5, а): on the cylinder q the stresses   and z increased, and in the half-space the stresses 
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  increased. In the bridge between the cylinders   decreased, z decreased on the cylinder q and increased on 

the cylinder p,   increased slightly. 

Variant 5. Cavity radius Rp=200 cm, cavity radius Rq=10 cm, αqp=3π/2, h=40 cm. Normal stresses in 

the bridges are shown in fig. 6. 
As compared to variants 1 and 3, the radius of the cylinder p increased, imitating the half-space. 

These changes have little effect in the bridge between the cylinder q and the half-space boundary (Fig. 6, а).  

In the bridge between the cylinders (Fig. 6, b), as the radius Rp increases the stresses   decrease, on 

the cylinder q, the stresses   and z  decrease, however they increase on the cylinder p. 

 
a        b 

Fig. 5. Normal stresses for the cylinder q in the bridges in plane z=0: 

а – between the cylinder q and the half-space boundary; b – between the cylinders 

 

 
a        b 

Fig. 6. Normal stresses for the cylinder q in the bridges in plane z=0: 

а – between the cylinder q and the half-space boundary; b – between the cylinders 

Conclusion 

With the help of the generalised Fourier method the spatial problem in the theory of elasticity when 

stresses are specified on the half-space boundary and on the boundaries of several parallel round cylindrical 
cavities is solved. The problem is reduced to an infinite set of systems of linear algebraic equations. 

The numerical analysis of the algebraic system for two cylinders and a half-space allows asserting 

that its solution can be found with any degree of accuracy using the reduction method. This is confirmed by 
the high accuracy of satisfying the boundary conditions. 

The graphs show the pattern of stresses in the body in the most interesting zones. They also give a 

representation of the mutual influence of cylindrical cavities on each other in the half-space, and the mutual 
influence of the half-space and cylindrical cavities. 

Within the topic of the study there is a possibility of a further consideration of problems with mixed 

boundary conditions, when stresses are specified on some boundaries and displacements are specified on the others. 
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