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An adaptive approach to the approximation of a continuous one-dimensional 

function, using a piecewise linear approximation, is considered. A simple 

mechanism of adaptive control of the stepping process with feedback is used. 

The possibilities of the approach are considered on the problems of calculating 

lengths of curves and values of certain integrals. The results of calculating 

definite integrals with a different character of the integrand obtained by both 

the proposed method and the usual trapezoidal method are presented. Numeri-

cal results showed high efficiency of the proposed adaptive approach. 
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Introduction 

The solution of many theoretical and applied problems requires that some functional dependencies f(x) be 

substituted into other g(x), which are more convenient for the realization of a specific problem. Such a substitution 
occurs when it is assumed that a number of requirements for the approximating object g(x), its form and properties 

are specified. These requirements include: class of functions, accuracy of approximation, computational costs, 

form of the final result, and much more. To describe the characteristics of such a substitution, the concept of the 
quality criterion [1] is introduced, which takes into account the accuracy achieved with respect to the number of  

computations spent for the functions f(x). We 

mean the aggregate computations of the function 

f(x), previously spent on analyzing its belonging to 

a particular class, the actual costs of the approxi-
mation g(x) to f(x), as well as the cost of recompu-

tation, in case of failure to immediately achieve 

the desired result. In such a case, a priori infor-
mation about the character (class) of the initial 

function may be missing, and the function itself 

fall into the category of difficult-to-compute ones. 
Here we have to use rather conventional, some-

times subjective concepts, such as poorly orga-

nized, difficult-to-compute functions, sometimes 

associated with poor conditionality [2]. Often, 
these are cases when large computational costs are 

required to obtain the value of the function itself, 

associated with solving large systems of differen-
tial or non-linear equations. 

In Figs. 1, 2 are shown the fragments of 

functions f (x) specified on the segment [A, B] and 
consisting of a series of parts, each of which has 

different singularities, which must be taken into 

account in the approximation. In this case, it is nec-

essary to clearly distinguish between the methods 
of specifying functions − coordinate (Fig. 1) and 

parametric (Fig. 2), which can complicate the nu-

merical implementation. 

 

Fig. 1. Coordinate method of defining functions 

 
a 

 
b 

Fig. 2. Parametric method of defining functions 

a – self-intersection; b –− closed form  

                                                   
 G. A. Sheludko, S. V. Ugrimov, 2018 

mailto:sugrimov@ipmach.kharkov.ua


APPLIED MATHEMATICS 

ISSN 0131–2928. Journal of Mechanical Engineering, 2018, Vol. 21, No. 2 61 

According to the Weierstrass theorem [3–5], any continuous function f(x) of class C2 can be uniformly 

approximated as closely as desired by polynomials. There are known classical Newton or Lagrange methods [2] 
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which allow us to approximate the original function with a specified accuracy ε. In this case, the achieved 
accuracy of ε depends on the number of grid points  

 BxxxA n  ,,, 10  .  (2) 

Initially, it is difficult to determine how many grid points (2) will be required for an approximation 

(1), so that the requirement 

 ],[,)()( BAxxgxfR nn  ,  (3) 

will be fulfilled with the specified precision ε.  
Therefore, a small number n is taken first, and if it does not suit, it is increased. For example, in the 

L.F. Richardson scheme [6], the existing grid is divided by additional internal points, which increases their number 

by about a factor of two (C. Runge principle [7]). Whether the result is satisfactory becomes clear only after a num-
ber of systems of equations have been solved. Depending on the properties of the function f(x), the degree of the 

polynomial (1) can be so great that even modern computers are not capable of resolving the necessary system of 

equations at a reasonable time. In practice, the number of equations is often limited to not more than one hundred.  
Such difficulties can sometimes be overcome by a special choice of interpolation points. This requires 

a preliminary analysis of the function f(x) being approximated and, therefore, additional computational costs.  

The interpolation error (3) can be represented in the form  
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Here one part depends on the properties of the function f(x) and is not subject to regulation, whereas 
the other one is related to the distribution of the interpolation points. Using this, you can improve the grid (2) 

by specifying points according to the formula 

 )]([5.0 ABABx ii  ,  (4) 

ninii ,,2,1,0)],22/()12(cos[  , 

where i are the zeros of Chebyshev polynomial of the first kind [4, 5, 8] 

   1,1,arccos)1(cos)(1  xxnxTn . 

But even with such an optimal case of generating points (4), one can not always be sure that the ab-

solute value of the error will be as small as desired at sufficiently large values of n.  

The G. Faber theorem [9] claims that, no matter what the grid is (2), we can select a continuous 

function f(x) on [A, B] such that the sequence of the interpolation polynomials )}({ xgn  does not converge 

with f(x). Of course, for the function f (x) one can achieve convergence due to a special arrangement of the 

grid points (2). This is possible by virtue of the J. Marcinkiewicz theorem [10], which claims that for a con-

tinuous function f (x) on [A, B] there is always a sequence of points for which the corresponding interpolation 
process coincides. But almost all such grids are extremely difficult to build in order to be included into a 

standard algorithm, i.e. each function needs its own grid.  

C. Runge in [7] showed that the interpolation process of the approximation )}({ xgn , even for a relatively 

simple and arbitrary differentiable function 12 ])5(1[)(  xxf , does not converge on the segment [-1; 1]. Later 

S.N. Bernstein in [11] paid attention to the fact that a simple continuous function xxf )(  on the same interval 

can not be approximated by the sequence )}({ xgn , that is, it turns out that 
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In this, a high degree of the interpolating polynomial can often lead to the accumulation of rounding 

errors. Therefore, in practice, using high-degree interpolation polynomials is avoided, since the interpolation 
error increases in proportion to the degree of the polynomial.  

The way out of this situation was partly the transition to piecewise polynomial interpolation with a low-

degree polynomial. In this case, the segment [A, B] is divided into sub-segments and on each of them the func-
tion f(x) is approximated by low-degree polynomials. One such effective method of approximating functions, 

which has become widely used in computational practice, is that of spline interpolation [12], based on the use of 

the simplest forms, in particular, on third  and fifth degree polynomials [13], which are most convenient for ap-

plied problems. Naturally, increasing the accuracy of spline approximation can go both along the path of increas-
ing the degree of the polynomial g(x) and the choice of a special law for inputting an irregular grid of arguments. 

At that, it should be taken into account that if the initial function has singularities, such as discontinuities, then 

the higher is the order of the spline is, the worse the data will be interpolated in the vicinity of the singularity. 
One of the ways to improve this can be the use of one or another modification of the spline method [12–

15], especially since there are plenty of variants for the present time and new ones are being developed. For ex-

ample, various basic splines appeared on the basis of the balanced approximations of Popov [13], the atomic 

functions of V.L. Rvachev [14], the local splines of V.S. Ryabenky [15], the barycentric interpolation [16], and 
many others. All of them are oriented on the theoretical side of approximation, rather than on the applied one, 

that is, they take into account the features of the function being approximated, specifying this each time with dif-

ferent requirements for it. In this case, the idea of approximation in itself is of a purely applied nature.  
Various modifications aimed at improving the methods of approximation turn out to be more complex 

both algorithmically and programmatically, and therefore more costly. At the same time, a natural desire to im-

prove approximation methods and increase their potential capabilities, entails, as a rule, a narrowing of the class 
of approximatable functions.  

The aim of the paper is to create effective adaptive methods for the piecewise-linear approximation of 

functions for the problem of finding the lengths of curves and calculating integrals under the conditions of lim-

ited information about the nature of the function itself and the presence of its derivatives. 

1. Adaptation 

Most often the information about the function f(x) being approximated is obtained using equidistant points. 

However, in different parts of the segment [A, B], the behavior of the function can be very different (see Fig. 1, 2). 
Therefore, the composition must correspond to the nature of the change in the function. Of course, even the optimal 

distribution of the points (4) will be the best only for the specific case of the function f(x). In this case, as a rule, it is 

necessary to solve a system of nonlinear equations. Such an approach can hardly be justified as a standard one.  
There are two approaches to constructing grids: a priori and a posteriori. Historically, almost all the 

considered approximation problems and methods for solving them relied on the first approach, which inevi-

tably leads to a narrower field of their application.  

In the second approach, a grid with the desired properties is constructed step by step on the basis of a 
relatively small volume of initial and current information, the properties being necessary to approximate a 

wide class of functions, including difficult ones. This turns out to be possible due to the inclusion of adaptive 

control into the adjustment process, in which case it is responsible for the accuracy of the approximation 
[17–24]. This approach is uniform for different approximatable functions and proceeds in automatic mode. 

Unlike traditional methods, it makes it possible to successfully solve many problems by very simple means 

which contribute to improving the efficiency of approximation, without worrying about a preliminary clarifi-

cation of the characteristic features of the function being approximated.  
Adaptive control U is usually understood as non-optimal control in a system with incomplete a priori 

information, but compensated by the accumulated information about the process and used to improve the quali-

ty of the system operation [25]. 
The adaptive scheme for solving an approximation problem can be based on constructing the follow-

ing grid point xk+1 (2) from the previous one xk 

 kkk hxx 1 ,  (5) 

where hk is the adaptively changing step  

 )(1 kkk QUhh  .  (6) 
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The a posteriori criterion for the situation Qk  included into (6), which in a certain sense characterizes 

the state of the approximation process formed at the moment k, is in general a multidimensional functional 
on the set of signs {Qk} of the situation Q. The signs can be either various direct or derivative measurable 

characteristics of the process (6), for example, performance, computational costs, local accuracy of the ap-

proximation obtained, or the degree of its deviation from a given value, etc. [17, 21–25].  
Under rather general conditions, the steps of the process (5) can be regarded as positive, which im-

plies the positivity of the function U(Q). We define the function U(Q) on the whole axis  Q . It fol-

lows from (6) that an increase (decrease) in U(Q) results in an increase (decrease) in a step. We specialize the 

function U(Q), requiring an inverse proportionality between the values of the function U(Q) at points equi-
distant from the position of the initial situation. This is caused by the fact that the decrease or increase in a 

step should occur in the same measure for equal in absolute value, but different-in-sign changes in Q [20].  

These properties are possessed by a unique function 

))(exp()( QQU  , 

where  is the adaptation coefficient characterizing the intensity of the step process (6) 

0)1(,ln  UCC . 

As a result, the law of adaptive control of the step (6) can be represented by the formula 

 )exp(1 kkk Qhh  .  (7) 

It is convenient to write the situation Qk as the level of deviation of the function g(x) from the function f(x) 

 )()(max xgxfQ
kk xxx

k 


.  (8) 

If it is necessary to keep the deviation (8) within certain limits, then it is natural to add into (7) the difference  

 kQ   (9) 

and obtain the law of adaptive step control in the form  

 )](exp[1 kkk Qhh  ,  (10) 

where ε is some degree of admissible deviation.  

On the basis of the adaptive mechanism (10) it is possible to solve specific problems taking into ac-
count the peculiarities inherent to them. We illustrate the possibilities of this approach of approximation of 

functions on the problems of calculating the length of arcs of curves and definite integrals. 

2. Adaptive approach in the problem of determining the length of a curve line  
One of the important numerical characteristics of a line is its length. If a line segment is a curve, then 

its length is the limit of consecutively inscribed broken lines in the line, when the number of links increases 

indefinitely, the length of the largest of them tending to zero (see Figure 2, a). We will approximately meas-

ure the length of a curve by the sum of the lengths of the inscribed links of the broken line nlll ,,, 21   

 
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where the length of each link lk in rectangular coordinates can be written as  

 
2

1
2

1 )()(   kkkkk yyxxl .  (12) 

According to the adaptive law (10), the process of approximating the length L of the curve y=f(x) by 

[A, B] is carried out step by step (Fig. 3) by the formula 

 2/)()],(exp[ 1
***

1   kkkkkkk yyggyhh ,  (13) 

where 
ky  is the approximate value of the function f(x) at the midpoint 2/)( 1

  kkk xxx , the most probable 

maximum deviation of the function g(x) from f(x). 

Naturally, in the formula (13) one can use not the approximate value of f(x) but the exact one. However, 

then we will need to calculate the additional value of the function f(x) at the midpoint, which we want to avoid.  
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Fig. 3. Fragment of  the deviation scheme for g from f for adaptive step control  

From Fig. 3 it is clear that the true ordinate of the function f(x), determined at the midpoint 
kx , can 

be approximately written as follows: 

 111
* /],)3([25.0   kkkkkkkkk hhyyyy .  (14) 

In this case, not one (solid line) is added to the current total length of the polyline, but the lengths of two chords 

(dashed lines), which approximate the curve segment y=f(x) on the segment [xk, xk+1] (Fig. 3) i.e. instead of (12)  
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is applied  and then the direction set by the chord 1kk yy  is substituted into 1


kk yy .  

Sometimes complex curves, especially those with self-intersections (see Fig. 2, a), including closed–
form ones (see Fig. 2, b), are given by formulas in the parametric representation. If a curve on the interval 

[tk, tk+1] is given in the form x=x(t), y=y(t), t[tk, tk+1], the length of a link is determined by the expression 

         211

2

11   kkkkkkkkk ttyyttxxl . 

When the sign of the condition (9) changes, the process is locally adjusted with a minimum of costs, 

in contrast to the traditional approach, which assumes doubling the number of points on the entire segment 

[A, B] to achieve the required accuracy. If the last adaptive step overlaps the boundary of B, then f(B) is as-

sumed to be a finite ordinate. 

The value  in the formula (13), in addition to its main function, can also contain a tool putting the step-

ping process into oscillation mode, which would make it possible to better retain the proximity 
**~ kk gy  if the 

function f(x) abruptly changes (right up to the discontinuity of it first derivative) which can be done by adapting 

the coefficient  in the form  

0)],(exp[ 001  
 kkkk gy . 

3. Adaptive approach in the problem of calculating a definite integral 

When the representation of a definite integral is not known, for example, in the form of an infinite 

convergent series, and it is impossible to ensure a given absolute accuracy by taking a certain number of 
terms of the series, it is necessary to directly use either the Newton-Cotes or Gauss formulas [2]. The former 

are more convenient and simple but inferior in accuracy to the latter at equal number of grid points. 

The process of perfecting quadrature formulas since the moment of their appearance to our days has not 
ceased [18, 19]. However, if at the initial stage this was related to the choice of optimal points or quadrature coef-

ficients, lately the problem of improvement has been translated into the category of adapting the parameters of one 

or another quadrature to the singularities of the integrand [2]. In a number of cases, the second stage, due to the 

use of adaptive control, leads to the results that are at the level of the optimal Gauss quadratures, and sometimes 
even superior to them [21–25]. The complexities of implementation that arise when solving such problems are 

primarily related to the appearance of difficult-to-compute functions introduced by the adopted models.  
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It is proposed to use a posteriori adaptive approach to numerical integration, especially since it is re-

vealed that it is almost completely similar to the length of the curve (11). Indeed, an approximate representa-
tion of the definite integral (see Figure 3), with allowance for (13) and (14), can be expressed as the sum 

 
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k

kkk gyhS . 

All formulas of the type (13) providing an adaptive process remain in effect, the grid adjustments (14) 

completely coinciding. In other words, the algorithm allows us to obtain the values of both L and S, as well as a 

set of approximations },{ **
kk fx  on the segment [A, B].  

To guarantee the numerical stability of integration if the function f (x) changes abruptly, it is possible 

to restrict the value of the step parameter (13) from below and from above. 

4. Numerical experiment 

The evaluation of the quality of a method is usually carried out according to various criteria [1, 2], 

which, in addition to its specific purpose, can also take into account a certain degree of universality in solv-
ing problems of a relatively wide area.  

In evaluating the effectiveness of a method, we use a widely used approach that takes into account 

two most important characteristics: the achieved accuracy of the solution and the amount of computational 
costs N. Following [1], such a conditional criterion (efficiency index) in our approximation problem can, for 

example, be taken in the form  

 
   

N

hSShS
E

2
0

2
0 lnln 





,  (15) 

where the proximity measure |S–S*|≤ on [A, B] (see (13), (14) and fig. 2); S is an approximate solution ob-
tained by a particular method, and S* is the exact solution. 

The table below presents the solutions to the problems with mainly difficult-to-compute functions pro-

posed by well-known authors [7, 22–24, 26], in which the results of testing by both the trapezoidal method 

(TM) and adaptation method (AM) are compared with the values of the quality criterion E (15) and the number 

N of computations of f(x) to achieve the accuracy ε. In this case the AECM accepts ε=0.01, =10, and the 

common start is accepted as h0=0.0625. In the table, (x) stands for the unitary Heaviside jump function. 

Calculation results of test cases 

Function [A, B] Method S N E 

2/32 )(13 xexxy   [22] [0; 4] 
TM –1.5529004234 65 0.081016 

AM –1.5535812508 42 0.123441 

))5(1/(1 2xy   [7] [–1; 4] 
TM 0.5788232767 81 0.061715 

AM 0.5782095842 45 0.107864 

xxy  3/12)(  [–1; 2] 
TM 1.0022152690 49 0.102729 

AM 1.0066125146 31 0.167322 

6]2.0)9.0[(]1.0)3.0[( 122122   xxy  [23] [0; 1] 
TM 29.8469834899 35 0.216577 

AM 29.8685381846 30 0.255216 

)]5()5()[2()2( 321  xfxfxxfy  

1)1( 4
1  xf , 1)3( 4

2  xf , 15)5( 4
3  xf  [–0.5; 6.5] 

TM 30.0541000366 113 0.064510 

AM 30.0356075719 130 0.065790 

xxy ln/cos  [1.05; 8.5] 
TM 4.0401378301 120 0.033874 

AM 3.9911147636 61 0.087370 

xxy lnsin   [0.1; 6.6] 
TM 11.5708938063 105 0.072655 

AM 11.5710118748 61 0.124723 

2xey   (Dawson’s integral) [26] [0; 6.5] 
TM 1.7623371017 209 0.020629 

AM 1.7372791017 193 0.035823 

2/1)arcsin(sin xxy   [0; 8] 
TM –13.6297344023 129 0.059185 

AM –13.6328221601 50 0.162118 

)1)3()(1()1(1  xxxxy  [24] [0; 5] 
TM 7.4375000000 81 0.058363 

AM 7.5461485167 45 0.111335 
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As you can see, the efficiency E of the AM proves to be higher than the uniform TM under the same ini-

tial conditions. 

Conclusion 

A simple mechanism of adaptive control of the stepwise process of piecewise linear approximation 

of a wide class of continuous functions with a finite number of discontinuities of the first and second kind on 
the segment [A, B] is given. This method illustrates a sufficiently high efficiency, using the exponential law 

of adaptation, which reacts quickly to the level of error deviation from the permissible value and allows ob-

taining more general results that are valid for a wide class of functions.  

The cases considered, mainly devoted to the calculation of definite integrals of  difficult-to-compute 
functions, have shown a rather high efficiency of the approach, owing to the use of adaptive control over the 

process of computations. For the operation of the method, knowledge of certain analytical properties of the 

function f(x), for example, the existence of derivatives, the presence of characteristic points, etc., is not re-
quired, and a separate preliminary and comprehensive analysis of the function in question is excluded. The 

initial data are minimal: an integrand function f(x) defined on an arbitrarily large finite domain [A, B], the 

required admissible accuracy ε of the deviation from f(x), and an initial step.  

The proposed self-adapting method guarantees the required accuracy in automatic mode. There is no 
need in choosing a suitable quadrature, a predefined special distribution of points and corresponding weight 

constants, and therefore, recomputation in case of their unsuccessful selection. The method is constructively 

simple, quite competitive among similar ones, based on a piecewise linear approximation of various func-
tions. The result is implemented in a single pass without any preliminary transformations and solutions of 

equation systems, use of tables of quadrature coefficients and points. The scheme does not require that the 

information about the function f(x) be stored simultaneously on the entire domain [A, B]. Only a small 
amount of RAM is involved and only direct computations are made. In situations with maximum a priori 

uncertainty, the workability and numerical stability of the method is maintained.  

The reliability of the obtained results is confirmed by the solution of known test examples and their 

comparison with the results of solutions by other methods.  
The proposed method opens the way for creating effective means of approximating functions and as-

sociated with them numerical integration differentiation, solutions of both finite, integral, and differential 

equations, summation of series, and so on.  
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