DYNAMICS AND STRENGTH OF MACHINES

UDC 539.3 When solving the problems of deformation solid mechanics, the inhomogeneous composite
material is modeled as homogeneous, with averaged mechanical properties — effective
SHEAR MODULUS characteristics. The purpose of this paper is to develop a technique for determining the
effective shear modulus for a viscoelastic fiber composite with a transtropic matrix and
OF A FIBER fiber. Their isotropy planes coincide and are perpendicular to the fiber axis. The effective
COMPOSITE WITH | shear modulus is defined as a function of the matrix and fiber mechanical properties and

the volume content of each of them in a composite. A unidirectional composite material
A TRANSTROPIC with a hexagonal fiber stacking scheme and a unit cell consisting of a viscoelastic matrix

VISCOLELASTIC and elastic fiber is considered. The geometric model of a composite is a combination of

M ATRIX AND two coaxial infinite cylinders: a hollow cylinder, modeling the matrix, and a solid one,

modeling the fiber inserted into it. The volume of the hexagonal cell is approximated by the
TRANSTROPIC volume of the cylinder. The radius of the cylinder is chosen so that the fiber volume content
ELASTIC FIBER in the hexagonal cell coincides with the value of this characteristic for the cylindrical cell.

To describe the viscoelastic properties of a composite, the ratios of the hereditary Boltz-

mann-Volterra theory are used. The shear modulus is defined as an integral operator with

Sergey Grebenyuk, a difference kernel. Two boundary problems are considered: with regard to the longitudi-
sm1212 @ukr.net nal shear of a transonic viscoelastic solid cylinder modeling the composite, and the joint
Mikhail Klimenko, lqngltudlnal Ajhear of .the hollow and solid .cylmders that model the mamx and fiber mate-
. rials, respectively. It is assumed that the displacements and tangential stresses on the con-
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tact surface of the matrix and fiber are continuous. A tangential harmonic load is applied
Zaporizhzhia National on the outer surface of the cylindrical cell. To solve such problems, the Laplace transform

University is used. As the matching condition, the equality of displacements on the outer surface of the
66 Zhukovsky St.. Zaporozhve cylinder is used for the two problems. The application of the proposed technique makes it
69600 Ukraifle - 2P e, possible to determine the characteristics of the integral operator describing the shear

modulus for a viscoelastic composite material. An instantaneous shear modulus and re-
laxation core parameters are found as the functions of the known mechanical characteris-
tics of the matrix and fiber. As an example, the characteristics of the shear modulus for a
composite material consisting of a rubber matrix and polyamide fiber are determined.

Keywords: fiber composite material, effective shear modulus, viscoelasticity, transtropic
material.

1. Introduction

A technique is proposed for determining the shear modulus of a viscoelastic fiber composite with a tran-
stropic matrix and fiber, depending on their mechanical characteristics, as well as the volume fraction of each of
them in a composite. The case of a viscoelastic matrix and elastic fiber is considered. The isotropy planes of the
matrix and fiber coincide and are perpendicular to the axis of the fiber. In order to obtain the characteristics of the
integral operator determining the desired shear modulus two boundary value problems are considered: with regard
to the longitudinal shear of a transonic viscoelastic solid cylinder modeling the composite, and the joint longitudinal
shear of the hollow and solid cylinders that model the matrix and fiber materials, respectively. As the matching
condition, the equality of axial displacements on the outer surface of the cylinder modeling said condition is used.

One of the most common methods of obtaining the mechanical characteristics of a composite material
is the homogenization procedure, where the composite is represented as a homogeneous anisotropic material
with the mechanical characteristics that depend on the mechanical characteristics of the matrix and reinforcing
fibers, as well as the volume fraction of fibers in the composite. At that, it is believed that the frequency of rein-
forcement by the fibers is large enough, and the reinforced layer can be considered as transtropic. Then, to de-
termine the mechanical characteristics of the composite, it is necessary to find five independent quantities: the
elastic moduli E;; and E»,, the shear moduli G;, and G»3, and the Poisson ratio v,.

Such relationships for a composite material with an elastic transtropic fiber and isotropic matrix for the
three-dimensional case were obtained in [1]. In [2], for the composite material the shear modulus G, is deter-
mined, taking into account the trans-structural properties of the matrix and fiber. As the matching condition, the
equality of the corresponding displacement vector components was used. The composite shear modulus taking
into account the trans-structural properties of the matrix and the fiber was found in [3] on the basis of the appli-
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cation of the energy matching criterion. The problems of determining the mechanical viscoelastic characteristics
of unidirectional composites based on the known characteristics of the matrix and fiber are considered in a num-
ber of works. In [4, 5], problems of predicting the viscoelastic properties of composites in the presence of a vis-
coelastic matrix or viscoelastic fiber are investigated, and the case of the presence of viscoelastic properties of
both the matrix and fiber is also studied. The problem of determining the viscoelastic deformation characteristics
of composites using the Boltzmann-Volterra hereditary theory of viscoelasticity is considered in [6]. There, a
technique for determining the effective viscoelastic characteristics of composites, based both on the approxima-
tion of the deformation function by a continued fraction and application of the method of operator continued
fractions. In [7], the homogenization of a two-component periodic composite with components separated by a
viscoelastic layer is presented. To solve this problem, Green's function method is applied. In [8], a finite element
analysis of the micromechanical model of a unidirectional fiber polymer composite under load is performed. At
that, a viscoelastic matrix and elastic fiber are considered, and the matrix is assumed to have cracks.

In this paper, on the basis of the kinematic matching conditions, the shear modulus G, of a composite
consisting of transtropic elastic fibers and a transtropic viscoelastic matrix is determined.

1. Basic assumptions and relations

Consider a unidirectional composite material with a hexagonal fiber stacking scheme. From the com-
posite volume, we cut out an elementary hexagonal cell containing one fiber and the surrounding matrix mate-
rial. Let the matrix and fiber be made of transtropic materials with coincident isotropic planes perpendicular to
the fiber axis. Suppose that the fiber material is elastic, and the matrix material is viscoelastic. Such properties
are characteristic, for example, of rubber-cord materials.

As a rule, to describe the viscoelastic properties of materials, differential equations (based on the
Hooke and Newton laws) or integral relations are used. The latter, more general, include the relations of the
hereditary Boltzmann-Volterra theory, where viscoelastic properties are described by an integral operator with
a difference relaxation kernel. The properties of a particular material are determined by the values of rheologi-
cal characteristics included in the integral operator.

As a geometrical model of a composite, a combination of two coaxial infinite cylinders is considered
— a hollow cylinder with an outer radius r = b, modeling the matrix and a solid one inserted into it with a
radius r = a, modeling the fiber. The volume of the hexagonal cell is approximated by the volume of the cyl-

inder, the cylinder radius being taken such that the volume fraction of the fiber f = a )2 in the hexagonal

cell coincides with the value of this index for the cylindrical cell.

4. The mechanical characteristics are determined from

o the solution to two boundary value problems. First, the prob-
lem of joint deformation of a transtronic viscoelastic matrix
X and transtronic elastic fiber is solved. As a result, we find the
components of the stress-strain state (SSS) as a function of the
mechanical characteristics of the matrix and fiber, as well as
the volume fraction of the fiber in the composite.

Next, we obtain a solution of an analogous boundary
value problem for a composite which is considered as a homo-
geneous viscoelastic transonic material with unknown me-
chanical characteristics. As a result, we determine the compo-
nents of the SSS as the functions of the unknown mechanical
characteristics of a homogeneous material modeling the com-
posite. Having chosen the matching conditions, we find the

Fig. 1. Kind of load applied to the outer mechanical characteristics of the viscoelastic transtropic com-
surface of the cylinder modeling the composite | posite, which are the functions of the mechanical characteris-
cell tics of the matrix and fiber, as well as the volume fraction of

the fiber in the composite.
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Let us consider the solution to the longitudinal shear problem for a transtropic cylindrical body [1].
We give the main relations that characterize the simple longitudinal shear in the cylindrical region for a vis-
coelastic material (Fig. 1). Then the components of the SSSD are determined by the relations

6,=0,=04=0,,=0,0_,=0_(r,6,1), 6y, =0,.(r,0,1),

Sz =€, =€ =" =0 ’ yzr = 'er(l",e,l‘) ’ YQZ = yez(r,G,t) :
It is assumed that the outer cylindrical surface of the region is subjected to an external load

G, (0,0,1)=0,c0s0. (1)
In this case the axial displacement is determined by the equality
uz(r,G,t):(Cl(t)r+C2(% Jcose, 2)

where Ci(#) and C,(#) are time-dependent functions. Using the Cauchy relations, we obtain the expressions
for the deformations

Y., =(r.0,0)= (cl(;)—cz(f% zjcose, Vo =(r,0,0)= —(cl (1) - Cz(t% zjsine. 3)
' r ) r
Then the expressions for the stresses take the form
Gzr = (r,G,t) = GIZ(Cl(t) - CZ(%ZJCOSGa 619 = (I", e7t) = _GIZ(CI(I) _CZ(%szine . (4)

In the equations (4), 512 is a linear integral operator characterizing the viscoelastic properties of the material

Guly(n)]= Gu[y(t)—fR(t —T)y(t)dtJ , (5)
0

where G, is the instantaneous shear modulus corresponding to the value ¢ = 0, R(¢) is the relaxation kernel.

2. The joint longitudinal shear of the matrix and fiber

Let us consider the problem of joint longitudinal shear of a hollow cylinder (a < r < b), modeling the
matrix, and a solid cylinder (0 < r < a), modeling the fiber. The asterisk denotes the values related to the ma-
trix, the circle refers to the fiber.

The basic relations that describe the SSS of a viscoelastic matrix on the basis of the formulas (2) —
(4) can be presented as:

W (r,0,1) = (A(t) +BO/ jcose, (©)
Y., (r.0.1) = (A(t) —B(”/r z)cose Yo (r0.0) = —(A(t)+ B(”/r z)sinﬁ, 7
c. (r,0,1)= éfz(A(t) - B(%zjcos 0, 6,4(r,0,1)= —éfz(A(t) + B(%zj sin @ (8)

where the linear integral operator éfz has the form similar to that of the operator (5), with the instantaneous

shift modulus Gl*2 instead of Gy, and the relaxation kernel R*(t) instead of R(?).

The basic relations that describe the fiber SSS (solid cylinder), taking into account the limited mo-
tion at » = 0, take the form:

u;(r,0,t)=C(t)rcos®, (©))
Y. (r,8,t)=C(t)cosO, V4(r,0,t) =—C(t)sin 6, (10)
c..(r,0,t)=G,C(t)cos O, 6% (r,0,t) =—G,C(t)sin B . (1)
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We find the functions A(¢), B(t), and C(¢) in the relations (6) — (11) for the problem of the joint longi-
tudinal shear of a viscoelastic matrix and elastic fiber. We use the boundary value condition (1) and the con-
tinuity conditions for the displacements and stresses in the composite at r=a

6., (a,0,0)=0.(a,0,1), u(a,0,t)=u.(a,0,1).

Taking into account (5), we obtain a system of convolution-type integral equations with respect to
the unknown functions A(f), B(¢), and C(¢) and apply the Laplace transform to it. From the obtained system
we find the following expressions for the images of the required functions:

N (61, +GL1-R (p))o
A = * ~% 7 = * Q"* ’ 12
D= G i—Epleaar H+6ali-F -1 (12
2~ 5* o
B(p)=— _ a (Glz(l_R (P))fGlz)qQ , 13
D= G =R )G+ H+Goll-R m)Ja=1) (3
5(p>=A'(p>+B;§’>. (14)

In (12) — (14) p is the Laplace transform parameter, E*( p) is the image of the relaxation kernel for the
matrix material.
3. Longitudinal shear for a composite material

Let us solve a similar problem with regard to the simple longitudinal shear for a homogeneous transtropic

viscoelastic material modeling the composite, representing it as a solid infinite cylinder with radius 5. The bound-
ary value condition has the form (1). The SSS components are determined by formulas similar to (9) — (11), where

instead of G, there will appear the linear integral operator élz of the type (5) with the composite instantaneous

shear modulus Gy, and relaxation kernel R(¢). C(¢) is replaced by Goéle .

4. Determination of the composite shear modulus characteristics
We find the instantaneous shear modulus Gy, and relaxation kernel R(¢), using the kinematic match-

ing condition u_(b,0,1) =u: (b,0,t), where u,(r, 0, t) is the composite axial displacement. Substituting here

the corresponding expressions for the axial displacements and applying the Laplace transform, we obtain the
equation in the images

Gl )G+ )+ G- NI-F () as)
(1-NGi+ 1+ DGR (p)

where R(p) is the image of R(f). Passing in this equality to the limit at p—oco and taking into account that

G, (1 - E(P))z

lim E( p)=lim R “( p) =0, we obtain a formula for determining the instantaneous shear modulus
poe< poe<

_GulGra+n+Gha-p)
(=G +(+ )G
We note that the formula (16) coincides with the expression for the shear modulus of a composite
with an elastic matrix and fiber obtained in [3].

(16)

12

Let us find the transformation kernel R(¢). For this we find its image R (p) from the equation (15)

Cx* +Cx+C,

E(P) = ,where C=(f _1)(G1*2)2’ G, :GI*Z(GIZ -Gy, )(1+f) ) C; =G,G, (=),
C,(x+Cy)
" G,(1-1) ~
C,=G,G,(+f), C.=—2—~2 x=1-R .
4 12GLA+ ), Cs G+ f) (p)
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Let the matrix viscoelastic properties be described by the integral operator with an exponential ker-
nel of the form R (r) = sles"' , where sg, 51 are the material rheological characteristics. Then the original R(?)
has the form

R(t)=qe™" +q,e™", A7)
2
where py =y + -3, g =— G5 4 _S(COCI=CCs+C)
Cs+1 C, C,(Cs +1)

S. Numerical results
We construct the integral operator 612 for the case when the matrix is the 67L rubber with the difference

* *

G,— . .
, where s;=-1, s =—0 —= with the instantaneous shear modulus

0
G,=1.5 MPa and the long shear modulus G.. =0.78 MPa, G,, =G, , the fiber material is the 23KNTS polyamide

cord, for which G;, =4.9 MPa. The values of the instantaneous shear modulus G, for different values of the fiber
volume fraction f are represented as follows:
f 0,0 0,2 0,4 0,6 0,8 1,0
G 1,500 1,857 2,310 2,904 3,717 4,900
To analyze the composite rheological properties, we construct the relationship

relaxation kernel R™(f—1)= sleSO(’ -0

g()=G[1]= Glz[l —jR(z —t)dt} .
0

Using (17), we obtain 2(1)/Gry
g =G, (Oc1 +0Le" +oe’ ) , where | 11
o =l+d L o =G o =92 - _ 1
So Do So Po 0.9 l\?\‘\ hhhhhhhh —_ -2
Let us investigate the viscoelastic properties of '\‘\‘-'\:..‘\: R s CET ——
a composite for different values of f using the dimen- | 0.8 N RS .
R N i s
sionless function g(% (Fig. 2). As can be seen, the | 07 . '.',_"‘__ _— | —---- -5
12 R LI
.. . . . . . e | — -6
most vivid manifestation of viscoelastic properties can | 0.6 =
be observed when a composite consists entirely of the
viscoelastic matrix material (at f=0). As the elastic fi- 0.5 o 05 L 1o zr -8
ber volume fraction increases, the composite viscoelas- ' ’
tic properties manifest less and when the composite is | Fig. 2. Dependences g(t)/G;, for different fiber content:
a fiber material (at f=1), it becomes purely elastic. 1-f=0;2-/=0.2;3 - f=0.4; 4 - f=0.6; 5 - /=0.8; 6 — f=1
Conclusions

The solution to the problem of finding the effective shear modulus for a composite with a viscoelas-
tic matrix can be obtained using the kinematic matching conditions by solving two boundary value problems:
with regard to the longitudinal shear of a transonic viscoelastic solid cylinder modeling the composite and
the joint shear of the hollow and solid cylinders that model the matrix and fiber, respectively. The proposed
technique, based on the application of the matching conditions of the selected displacement components for
the cell of a homogeneous composite and its constituents, can be used to determine other effective character-
istics of viscoelastic composite materials.
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Monyab 3cyBY BOJTOKHHCTOI0 KOMIIO3HTY 3 TPAHCTPOIHOIKO B’ SI3KONPYKHOI0 MATPHIIEIO Ta
TPAHCTPONMHUM NPYKHUM BOJIOKHOM

I'pedentok C. M., Knumenko M. L.

3arnopi3bKuii HalllOHAIBHUI YHIBEPCHTET,
69600, Ykpaina, M. 3anopixoks, ByJ1. JKykoBceKoro, 66

1Ti0 uac posg’sizanms 3a0au mMexamiku 0e@opmieHO20 MEEPO02O MiNa HeOOHOPIOHUI KOMNO3UYIIHULL Mamepial Mooe-
JOEMBCA OOHOPIOHUM 3 OCEPEOHEHUMU MEXAHTYHUMU 6IACMUBOCHAMU — eeKmueHUMU Xapakmepucmuxamu. Memoio yici
cmammi € po3pooKa MemoOUKY BUSHAUEHHS ePeKMUBHO20 MOOYIA 3CY8Y Ol 8 SA3KONPYHCHO20 B0JIOKHUCHOZ0 KOMARO3UMA 3
MPAHCMPONHUMU MAMPUYEIO Ma 60T0KHOM. Lxni nnowunu izomponii chienadaioms ma nepnenouxyiapHi oci eonokna. Egex-
MUBHUL MOOY/Ib 3CYBY BUSHAUAEMBCA AK QYHKYIA MEXAHIYHUX 8IACMUBOCMEL MAMPUYT MA 80I0KHA | 00 EMHO20 8MICIY KOXHC-
HO20 3 HUX 8 Komnosumi. Po3enioaemovcs 0OHOCHPAMOBAHUL KOMNOSUYILHULL Mamepian 3 2eKCA2OHATLHOIO CXeMOI0 YKIAOKU
B0JIOKOH Ma 3 eleMEeHMAPHOI0 KOMIDKOIO, WO CKIAOAEMbCA 3 8 A3KONPYHCHOI Mampuyi ma npysxcHozo 6010kHa. I eomempuu-
HOW0 MOOEN0 KOMRO3UMA € KOMOTHAYIA 080X KOAKCIANGHUX HECKIHUEHHUX YUTTHOPIE — NOPOACHUCIIOZ0, WO MOOETIOE MAMPU-
Yio, ma 6CMABNEHO20 Y HbO20 CYYLIBHOZ0, WO MOOet€ 80N0KHO. 06’ €M 2eKca2oHANbHOT KOMIPKU ANPOKCUMYEMbCA 00 €EMOM
yuninopa. Ilpu yvomy paodiyc yuninopa ooupacmucsi max, wobd 06’ emMHULL 6MICM 80JOKHA 8 2eKCASOHANbHIL KOMIPYT CRIBnaoaes
31 BHAUEHHAM Yici Xapakxmepucmuky OJis YUITHOPUUHOT KoMipKu. [l onucy 8’ A3KONPYsICHUX &IACTUBOCTEN KOMNO3UMA BUKO-
PUCMOBYIOMbCS CNIBBIOHOUIEHHSL CRAOK080T meopii borvymana-Bonemeppa. Moodynb 3cy8y eusHauaemvcs K iHmMeSpantbHuil
onepamop 3 pisHuyesum a0pom. Posenanymo 06i Kpauosi 3a0aui: npo no830064CHill 3cV8 MPAHCIMPONHO20 8 SA3KONPYHCHOSO
CYYINbHO20 YUTTHOPA, WO MOOETIOE KOMIO3UM, MA NPO CRITbHUL NOB3008ICHIL 3CY8 NOPOANCHUCHOZ0 A CYYLTbHO20 YUTTHODIS,
wWo Mooenoms 8ionoGioHo Mamepian mampuyi ma mamepian 601okHa. Ilepedbauacmvcs nenepepsricmsy nepemiuerb ma
OOMUYHUX HANPYIHCEHb HA NOBEPXHI KOHMAKMY Mampuyi ma 8010kHA. Ha 306HiwHil noeepxmi yuiiHOpuyHOI KOMIPKU NPUKIA-
0aemvcsi OOMUUHe 2apMOHIYHE HABAHMAX CEHHA. /[N pO368’A3aHHA MAKUX 3a0ay 8UKOPUCMOBYEMbCA nepemsopenns Jlannaca.
AK yM08a Y320094CeHHsL 3ACMOCOBYEMbCA PIBHICHb NepeMiyeHb HA 306HIUHIN NOBEPXHI YUTiHOpa Ost 000X 3aday. Bukopuc-
MAHHA 3aNPONOHOBAHOI MEMOOUKU O0360JIA€ BUSHAYAMU XAPAKMEPUCMUKY THMESPATbHO20 ONepamopd, Wo ONUCYE MOOYIb
3¢Y8Y 07151 8 AZKONPYAHCHO20 KOMIOZUYILIHO2O MAMEPIATY. SHAXOOMbCS MUMMEBULL MOOYIb 3CY8Y MA NAPpAMempU A0pa Penax-
cayii’ AK QYHKYIT 8I00MUX MEXAHIYHUX XAPAKMEPUCUK MAMPUYT Ma 8010KHA. K NpuKiao eusHaueHi Xapakmepucmuxu Mooy-
JI8L 3¢Y8Y 07151 KOMROZUYITIHO20 MAMEPIANY, WO CKIAOAEMbCA 3 2YMOBOI MAMpUYyi ma NOTAMIOHO20 B0JIOKHA.

Kniouogi cnosa: xomnosum, egpekmugnuii MoOyab 3CY8Y, 8 A3KONPYICHICIb, MPAHCMPONHUL MaAmMepia.
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UDC 539.3 A refined mathematical model of gas turbine engine rotors using three-dimensional

finite elements of a curvilinear form is developed. All the calculations were per-

USE OF REFINED formed for rot.ors, which are widely used in power machl‘ne building anc.l shipbuild-

ing. The fact is that such components have a constructive heterogeneity that can

FINITE ELEMENT hardly be correctly explained using well-known finite elements and their shape

MODELS FOR functions. On the other hand, the mathematical model should be as simple as pos-

SOLVING sible with a view to its wide use in the process of designing a rotor. Therefore, a

new refined finite-element mathematical model was developed, consisting of three-

THE CONTACT dimensional curvilinear hexahedral finite elements. It was used to calculate the

THERMOALASTICITY dzsp.lacen.wnt field caused by the c?mplex action of the. heat ﬂux and contgct load at

the junction of rotor elements. This approach makes it possible to describe the en-

PROBLEM OF GAS tire rotor as a superposition of the developed curvilinear finite element models and

TURBINE ROTORS make the calcu.lation process more co.rrect a‘nd compact. To solve this problem, a

system of matrix equations was compiled. It is based on the use of energy balance

. dependences in the mechanical contact interaction of rotor elements, as well as the

Aleksey Kairov heat balance under the influence of non-stationary heat flow. When creating a nu-

Sergey Morgun, merical algorithm for solving the problem, the direct decomposition of Cholesky

serhii. morhun @nuos.edu.ua was used. To make the solution more compact, the Sherman scheme was used. All

- = the calculations of displacement and temperature fields were carried out for two

Admiral Makarov National wz:dely used types of Jjoints, which are used to create such rotors, namely: joints

University of Shipbuilding, with clearance and interference.
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Introduction

The working process of gas turbine rotors that are used in modern turbines is constantly influenced by
various high intensity mechanical and thermal effects. This causes changes in the stress-deformed state of the
entire motor as well as its components, such as the disk, shaft, and blades due to their mechanical contact and
the heat flow passing through their contacting surfaces. This correlation is especially important for gas turbine
engine components due to their extremely complex working process.

It should be noticed that the main conditions of contact between rotor components are not always identi-
cal even when one-type parts contact. [1]. Firstly, the shaft and rotor are mounted before the start of the working
process. This means that each pair of contacting surfaces has its own definite conjugation conditions. But during
the working process the conjugation conditions can rapidly change. This fact causes the changes of the mechani-
cal contact pressure. Therefore, changes of heat flow parameters can also be observed on the shaft and blade row
contact surfaces [2]. Therefore, the mathematical model used for solving a gas turbine engine rotor thermoelastic-

© Aleksey Kairov, Sergey Morgun, 2018

ISSN 0131-2928. Journal of Mechanical Engineering, 2018, vol. 21, no. 3 53



