# NON-TRADITIONAL POWER ENGINEERING

### УДК 662.769.21; 544-971; 54-19

# АНАЛИЗ ТЕРМОДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК МЕТАЛЛОГИДРИДНЫХ СИСТЕМ ДЛЯ ХРАНЕНИЯ ВОДОРОДА С ИСПОЛЬЗОВАНИЕМ МОДИФИЦИРОВАННОЙ СХЕМЫ ТЕОРИИ ВОЗМУЩЕНИЙ

### В. В. Соловей,

д-р техн. наук solovey@ipmach.kharkov.ua ORCID: 0000-0002-5444-8922

# А. Н. Авраменко,

канд. техн. наук an0100@a.ukr.net ORCID: 0000-0003-1993-6311

**К. Р. Умеренкова**, канд. техн. наук ORCID: 0000-0002-3654-4814

Институт проблем машиностроения им. А. Н. Подгорного НАН Украины, 61046, Украина, г. Харьков, ул. Пожарского, 2/10 Применение гидридов интерметаллических соединений (ИМС) для реализации рабочих процессов термосорбционных компрессоров, тепловых насосов, систем хранения, очистки и программируемой подачи водорода обусловлено рядом уникальных свойств этих сорбентов водорода. К ним, прежде всего, относится то, что насыщение ИМС с большой сорбционной емкостью происходит при сравнительно «мягких» термодинамических условиях, а также избирательность сорбционных процессов и наличие эффекта термодесорбционного активирования атомов и молекул изотопов водорода. Работа посвящена описанию фазовых равновесий в гидридах ИМС. Предложенный подход к проблеме расчета фазовых равновесий в металлогидридах состоит в определении свойств решеточного газа атомов H и равновесной с ним молекулярной фазы H<sub>2</sub> в рамках единого метода – модифицированной теории возмущений. Термодинамическое описание водородной подсистемы в области неупорядоченных α-, β-фаз выполнено на базе модели неидеального (взаимодействующего) решеточного газа атомов водорода. При этом учтены как прямое взаимодействие между атомами водорода, так и косвенные «деформационные» вклады в потенциальную энергию вследствие расширения решетки при растворении водорода. Моделирование фазовых переходов в системах ИМСводород на базе модифицированной схемы теории возмущений дает правильное описание основных особенностей фазовых диаграмм в широком диапазоне давлений водорода. Из условия равенства химических потенииалов Н-подсистемы гидрида и Н<sub>2</sub>-фазы (в расчете на атом Н) получены уравнения, связывающие давление газообразной фазы H<sub>2</sub> с параметрами гидрида с и Т (фазовые диаграммы). В предложенной вычислительной процедуре не используются подгоночные параметры или эмпирические корреляции, и она опирается на атомные характеристики водородной подсистемы и металлической матрицы, имеющие однозначный физический смысл. В качестве объекта исследования выбран гидрид интерметаллида LaNi<sub>5</sub>. Особый интерес представляет положение критической точки β→α-перехода в системе LaNi<sub>5</sub>-водород, для которой отсутствуют экспериментально полученные значения параметров. В работе приведены расчетные значения критических параметров  $\beta \rightarrow \alpha$ -перехода  $T_c$ =445 K,  $p_c$ =87 атм. Определенные расчетным путем данные о термодинамических параметрах  $\alpha \rightarrow \beta$ -перехода (энтальпия, энтропия и давление на плато изотерм) позволяют описать растворимость водорода в LaNi<sub>5</sub> при давлениях до 500 атм и хорошо согласуются с имеющимися в литературе экспериментальными данными.

*Ключевые слова*: водород, металлогидриды, интерметаллические соединения, фазовые диаграммы, решеточный газ.

### Введение

Математическое моделирование фазовых равновесий в системах «водород-металлогидриды» позволяет ограничить или исключить дорогостоящие и длительные экспериментальные исследования. Однако до недавнего времени методы расчета теплофизических свойств гидридов металлов и гидридов ИМС являлись в основном эмпирическими, что затрудняло проектирование и создание элементов металлогидридных систем, поскольку в таком случае невозможно прогнозировать их характеристики.

В статье [1], посвященной применению термодинамической теории возмущений для описания фазовых равновесий в гидридах металлов и ИМС, показано следующее. Модель неидеального решеточного газа атомов водорода на базе метода теории возмущений позволяет воспроизводить основные особенности фазовых диаграмм систем ИМС-водород. Расчеты проведены в области неупорядо-

<sup>©</sup> В. В. Соловей, А. Н. Авраменко, К. Р. Умеренкова, 2019

ченных α- и β-фаз на примере системы Pd-H<sub>2</sub>. Полученные результаты для PCT-зависимостей (давление-состав-температура) этой системы согласуются с экспериментальными данными.

В настоящей работе предложенным методом определены сорбционные характеристики ИМС LaNi<sub>5</sub> с гексагональной структурой. Впервые построены диаграммы состояния системы LaNi<sub>5</sub>–H<sub>2</sub> как в двухфазной области ( $\alpha$ + $\beta$ ), так и при сверхкритических параметрах.

# Химический потенциал решеточного газа в гидридах ИМС

Предложенный подход к проблеме расчета фазовых равновесий в металлогидридах состоит в определении свойств решеточного газа атомов Н и равновесной с ним молекулярной фазы H<sub>2</sub> в рамках единого метода – модифицированной теории возмущений (МТВ) [2, 3]. Термодинамическое описание водородной подсистемы в области неупорядоченных фаз проведено на базе модели неидеального решеточного газа атомов водорода. При этом учтены как прямое взаимодействие между атомами водорода, так и косвенные «деформационные» вклады в потенциальную энергию вследствие расширения решетки при растворении водорода.

Отметим важное обстоятельство: исходная кристаллическая структура ИМС в большинстве случаев не отличается от структуры металлической матрицы в гидридных фазах систем ИМС-водород в области неупорядоченных фаз.

В этом случае химический потенциал µ<sub>н</sub> водородного компонента гидридов ИМС для базисного случая растворов внедрения с единственным типом эквивалентных междоузлий, при ограничении членами второго порядка теории возмущений, имеет вид [1]

$$\beta \mu_{H}^{+}(\theta,T) = \ln \frac{\theta}{1-\theta} + \frac{W_{1}\theta}{T(1+\alpha c_{s}\theta)} + \frac{W_{2}\theta^{2}}{T^{2}(1+\alpha c_{s}\theta)^{2}},$$
(1)

где  $\beta = 1/kT$ ;  $\mu_H^+ = \mu_H - \mu_H^{st}$ ;  $\mu_H^{st}(T)$  – химический потенциал в стандартном состоянии [1];  $\theta = C/C_s$  – относительная концентрация водорода;  $C = n_{IMC} \cdot c$  – концентрация водорода в виде отношения H/ИМС, т.е. на формульную единицу ИМС;  $n_{IMC}$  – число атомов в формульной единице; c – концентрация водорода в единицах H/Me, т.е. на один атом матрицы;  $\alpha = c^{-1}(\Delta V(c)/V)$  – коэффициент дилатации решетки ИМС при растворении водорода. Величины  $C_s$  [H/IMC] – сорбционная емкость ИМС или максимальное число позиций внедрения H-атомов в исследуемой фазовой области;  $c_s$  [H/Me] – максимальная концентрация c, связаны соотношением  $C_s = n_{IMC} \cdot c_s$ .

Постоянные  $W_1$  и  $W_2$ , обеспечивающие связь между макроскопическими свойствами растворов внедрения ИМС-водород и микроскопическими (атомными) характеристиками водородной подсистемы и металлической матрицы ИМС

$$W_1 = 2I_1 n_M (\sigma_1^3 / v_0) E_1 c_s, W_2 = (3I_2 / 4I_1^2) W_1^2,$$
<sup>(2)</sup>

где  $I_1$ = -5,585,  $I_2$ =1,262 – параметры МТВ для H-газа [1];  $n_M$  – число атомов матрицы в элементарной ячейке;  $v_0$  – объем ячейки при C=0;  $E_1$  [K] и  $\sigma_1$  [M] – параметры потенциала (H–H)-взаимодействия  $u_H(r)=kE_1\varphi(r/\sigma_1)$ .

# Границы областей α- и β-фаз системы LaNi<sub>5</sub>-H<sub>2</sub>

Для системы LaNi<sub>5</sub>–H<sub>2</sub> в области  $\alpha$ – $\beta$ -равновесий максимальное количество абсорбированного водорода соответствует стехиометрическому составу LaNi<sub>5</sub>H<sub>2,5</sub>, т.е. значение  $C_s$ =6,7 ( $c_s$ =1,12). При параметрах (в Å)  $a_0$ =5,015,  $c_0$ =3,987 [4] элементарной ячейки LaNi<sub>5</sub>, содержащей  $n_{\rm M}$ = $n_{\rm IMC}$ =6 атомов, ее объем  $v_0$ =86,84·10<sup>-30</sup> м<sup>3</sup>. При параметрах матрицы гидрида  $a_x$ =5.426,  $c_x$ =4.269 и значениях концентрации  $c_x$ = $c_s$ =1 получим для коэффициента дилатации решетки LaNi<sub>5</sub> значение  $\alpha$ =2,9·10<sup>-30</sup> [м<sup>3</sup>]· $n_{\rm M}/v_0$ =0,20 [5].

Для комбинации  $E_1\sigma_1^3$  в (2), отвечающей за энергию (H–H) притяжения водорода в LaNi<sub>5</sub>H<sub>x</sub>, как и в случае гексагональной решетки PdH<sub>x</sub> [1], примем  $E_1\sigma_1^3=0,45(E_1\sigma_1^3)_{Pd}$ , где  $(E_1\sigma_1^3)_0$  соответствует взаимодействию свободных H-атомов. Это дает значения постоянных величин  $W_1=-2,52\cdot10^3$  K,  $W_2=1,93\cdot10^5$  K<sup>2</sup>.

Из выражения (1) получены значения температуры и концентрации водорода в критической точке  $\alpha$ - $\beta$ -равновесий [6]  $T_c$ = -0,216· $W_1$ /(1+ $\alpha c_s$ )=445 K,  $C_c$ = $\theta_c \cdot C_s$ =2,75 H/LaNi<sub>5</sub> ( $\theta_c$ =0,46/(1+0,54 $\alpha c_s$ )=0,41). Дав-

ление в критической точке  $p_{H_2}^{(c)}$  определено ниже. Экспериментальные сведения о положении критической точки  $\alpha$ – $\beta$ -равновесий в системе LaNi<sub>5</sub>–H<sub>2</sub> до настоящего времени отсутствуют.

Ветви  $C_i(T) = C_s \cdot \Theta_i(T)$  кривой распада гомогенных фаз системы LaNi<sub>5</sub>–H<sub>2</sub> на неупорядоченные фазы *i*= $\alpha$ ,  $\beta$  определяются условиями равновесия

$$\begin{cases} p_H(\theta_{\alpha}, T) = p_H(\theta_{\beta}, T); \\ \mu_H^+(\theta_{\alpha}, T) = \mu_H^+(\theta_{\beta}, T), \end{cases}$$
(3)

где *p*<sub>*H*</sub> – давление решеточного Н–газа.

Границы двухфазной области ( $\alpha$ + $\beta$ ) определены из следствия условий (3) – правила равных площадей (ограниченных кривой  $\mu_{H}^{+}(\tilde{\theta})$  и прямой  $\mu_{H}^{+(PL)}$ ), которое при температуре *T*<*T<sub>c</sub>* выполняется в плоскости ( $\mu_{H}^{+} - \tilde{\theta}$ ) [1]

$$p_{H}^{(\beta)} - p_{H}^{(\alpha)} = \operatorname{const} \int_{\widetilde{\theta}_{\alpha}}^{\widetilde{\theta}_{\beta}} [\mu_{H}^{+(PL)} - \mu_{H}^{+}(\widetilde{\theta})] d\widetilde{\theta} = 0.$$
(4)

Здесь переменная  $\tilde{\theta} = \theta/(1 + \alpha c_s \theta)$ ; зависимости  $A^{(PL)} = A^{(\alpha)}(T) = A^{(\beta)}(T)$ , где  $A^{(i)}(T) \equiv A(\theta_i, T)$ значения функций  $A = p_H$ ,  $\mu_H^+$  на границах фаз *i*= $\alpha$ ,  $\beta$ , т.е. на «плато» давления и «плато» химического потенциала решеточного H-газа. Определив из (4) координаты  $\tilde{\theta}_i(T)$ , можно получить ветви кривой распада (CT)  $\theta_i(T)$ , т.е. значения  $\theta_i = \tilde{\theta}_i/(1 - \alpha c_s \tilde{\theta}_i)$ , удовлетворяющие уравнениям (3).

# Равновесное давление водорода в двухфазной области (α+β)

Температурная зависимость  $p_{H_2}^{(PL)}(T)$  –давления разложения гидридной  $\beta$ -фазы, т.е. давления водорода на «плато» изотерм  $p_{H_2}(C)$  в гетерогенной фазовой области ( $\alpha$ + $\beta$ ), может быть представлена

традиционным уравнением Вант-Гоффа

$$\ln p_{H_2}^{(PL)}(T) = -\frac{\Delta H_{\beta \to \alpha}}{RT} + \frac{\Delta S_{\beta \to \alpha}}{R}, \qquad (5)$$

где параметры  $\Delta H_{\beta \to \alpha}, \Delta S_{\beta \to \alpha}$ , т.е. энтальпия и энтропия  $\beta \to \alpha$ -перехода, в схеме МТВ имеют вид

$$\Delta H_{\beta \to \alpha} \cong H_{H_2}^0 + 2RT\Delta_{\beta \to \alpha}$$
  
$$\Delta S_{\beta \to \alpha} \cong S_{H_2}^0 - 2R\Delta_{\beta \to \alpha} \qquad (6)$$

Здесь  $H_{H_2}^0$ ,  $S_{H_2}^0$  – энтальпия и энтропия  $H_2$  в стандартном состоянии идеального газа, величина  $\Delta_{\beta\to\alpha}(T) = \beta(h_H^{+(\alpha)} - h_H^{+(\beta)})/(\theta_\beta - \theta_\alpha)$  соответствует относительной разности удельной энтальпии  $h_H$  решеточного H-газа  $h_H^{(i)}(T) \equiv h_H^{st}(T) + h_H^+(\theta_i, T)$  на границах гомогенных фаз  $\theta_\alpha(T)$  и  $\theta_\beta(T)$ .

Для рабочего диапазона  $\alpha$ – $\beta$ -равновесий гидрида, как и ранее [2], определим параметры (6) в критической точке  $\beta$ — $\alpha$ -перехода. Исходя из выражений для энтальпии неидеального решеточного Н-газа [6] и для критической концентрации  $\theta_c$ =0,46/(1+0,54 $\alpha c_s$ ), для системы LaNi<sub>5</sub>-H<sub>2</sub> ( $\theta_c$ =0,41) получим



Рис. 1. Логарифм давления разложения  $\beta$ -фазы гидридов LaNi<sub>5</sub> как функция обратной температуры: — расчет согласно (5) при  $\Delta H_{\beta \to \alpha}$ =29,8 кДж/моль H<sub>2</sub>,

$$\Delta S_{\beta \to \alpha} = 104 \ \text{Дж/(К·моль H2)};$$

[7] и • [8] – результаты экспериментов по десорбции Н2

### НЕТРАДИЦІЙНІ ЕНЕРГОТЕХНОЛОГІЇ

$$-\Delta_{\beta \to \alpha}^{(c)} = \frac{\partial(\beta h_H^+)}{\partial \theta}\Big|_{\substack{T=T_c\\ \theta=\theta_c}} = \frac{1}{\theta_c(1-\theta_c)} + \frac{1}{\theta_c^2} \left[\ln(1-\theta_c) - \frac{0.63}{1+\alpha c_s}\right],$$

откуда  $\Delta_{\beta\to\alpha}^{(c)}$  =2,3. Для параметров  $\beta\to\alpha$ -перехода в интервале температур от 263 K до  $T_c$ =445 K со-

гласно (6) при  $\Delta_{\beta \to \alpha} = 2,3$  имеем значения  $\Delta H_{\beta \to \alpha} = 29,8$  кДж/мольH<sub>2</sub>,  $\Delta S_{\beta \to \alpha} = 104,0$  Дж/(К·моль H<sub>2</sub>).

Зависимость давления разложения  $\beta$ -фазы гидридов LaNi<sub>5</sub> от обратной температуры, полученная из выражения (5), сравнивается на рис. 1 с данными экспериментов по десорбции водорода [7] и [8], проведенных в ограниченных рабочих диапазонах температур.

Из уравнения (5) при  $T=T_c$  для системы LaNi<sub>5</sub>–H<sub>2</sub> можно получить значение давления в критической точке  $\alpha$ – $\beta$ -равновесий:  $p_{H_2}^{(c)}$ =87 атм. Экспериментальные данные об этом параметре отсутствуют.

### Водородосорбционные свойства LaNi5 в одно- и двухфазной областях при давлениях до 500 атм

Фазовые диаграммы, связывающие давление  $p_{H_2}$  молекулярного водорода с параметрами *с*, *T* гидрида, могут быть получены из условия равенства химических потенциалов решеточного H-газа  $\mu_H(c,T)$  и газообразной фазы H<sub>2</sub>  $\mu_{H_2}(p_{H_2},T)$ , в расчете на атом H

$$\frac{1}{2}\mu_{H_2}(p_{H_2},T) = \mu_H(c,T).$$
(7)

Если при заданных *с*, *T* происходит разложение  $\beta$ -фазы гидрида ИМС на  $\alpha$ -твердый раствор и H<sub>2</sub>, на РСТ-диаграммах в двухфазной области ( $\alpha$ + $\beta$ ) появляются «плато», т.е. отрезки постоянного давления  $p_{H_2}^{(PL)}(T)$ , положение которых можно определить из равенства

$$\frac{c_{\beta} - c_{\alpha}}{2} \beta \mu_{H_2}^{(PL)} = \beta (h_{MH}^{(\beta)} - h_{MH}^{(\alpha)}) - (s_{MH}^{(\beta)} - s_{MH}^{(\alpha)}), \qquad (8)$$

где  $\mu_{H_2}^{(PL)} \equiv \mu_{H_2}(p_{H_2}^{(PL)},T)$  – химический потенциал H<sub>2</sub> на «плато»;  $\beta h_{MH}^{(x)} \equiv H_{MH}(c_x,T)/RT$ ,  $s_{MH}^{(x)} \equiv S_{MH}(c_x,T)/R$  – удельные энтальпия и энтропия гидрида на границах фаз  $c_i(T) = c_s \theta_i(T)$ . После преобразований равенств (7) и (8) для зависимостей  $p_{H_2}(\theta,T)$ , пересекающих одно- и двухфазные области гидридов ИМС, получим

$$\ln p_{H_2}(\theta, T) = \ln p_{H_2}^{(PL)}(T) + 2\beta[\mu_H^+(\theta, T) - \mu_H^{+(PL)}(T)],$$
(9)

где  $p_{H_2}^{(PL)}(T)$  – давление разложения  $\beta$ -фазы;  $\mu_H^{+(PL)}(T)$  – высота «плато» на концентрационных зависимостях изотерм  $\mu_H^+(\theta)$ , определяемая условиями фазового перехода газ-жидкость в водородном компоненте гидрида, т.е. в решеточном H-газе.

Выражение (9) при  $\theta < \theta_{\alpha}$  и  $\theta > \theta_{\beta}$  описывает нисходящие и восходящие ветви изотерм  $p_{H_2}(C)$  соответственно, а при  $\theta_{\alpha} < \theta < \theta_{\beta}$  дает значение  $p_{H_2}^{(PL)}(T)$  согласно уравнению Вант-Гоффа (5).

Для РСТ-зависимостей выше критической точки  $\alpha$ - $\beta$ -равновесий, с учетом поправки в  $\mu_{H_2}(p_{H_2},T)$  за счет второго вириального коэффициента  $H_2$  можно получить

$$\ln p_{H_2}(\theta, T) + 0.18 \frac{p_{H_2}(\theta, T)}{T} = Q + \frac{\Delta \Phi_{H_2}^0(T)}{R} + 2\beta [\mu_H^+(\theta, T) - \mu_H^{+(c)}],$$
(10)

где  $\Delta \Phi_{H_2}^0(T) = \Phi_{H_2}^0(T) - \Phi_{H_2}^0(T_-)$ ; величины  $Q = \ln p_{H_2}^{(c)} + 0.18 p_{H_2}^{(c)} / T_c$ ,  $\Phi_{H_2}^0(T) = -G_{H_2}^0(T) / T$ ;  $G_{H_2}^0 - 3$  энергия Гиббса в состоянии идеального газа; давление водорода  $p_{H_2}$  задано в атм, температура T -в К.

Фазовая диаграмма системы LaNi<sub>5</sub>–H<sub>2</sub> в виде набора изотерм растворимости водорода при температурах ниже  $T_c$  рассчитана согласно выражению (9), а в закритической однофазной области  $T \ge T_c$  – согласно выражению (10).

Полученные результаты приведены на рис. 2 в сравнении с результатами экспериментов по десорбции водорода [7, 8]. Там же показаны расчетные зависимости при повышенных температурах и давлениях до порядка 500 атм, когда в вириальном разложении химического потенциала газообразных фаз водорода допустимо ограничиться членом со вторым вириальным коэффициентом  $B_{H_2}$ . Экспериментальные данные о растворимости водорода в LaNi<sub>5</sub> в этой области состояний отсутствуют. При критической температуре  $\mu_{H}^{+(c)} = \mu_{H}^{+(PL)}(T_{c}), \Delta \Phi_{H_{2}}^{0} = 0, и оба$ выражения (9) и (10) описывают критиче $p_{H_2}(\boldsymbol{\theta},T_c)$  LaNi<sub>5</sub> скую 445 K изотерму (172,6 °С) с точкой перегиба *C*<sub>c</sub>=2,75 H/LaNi<sub>5</sub>;  $p_{H_2}(\theta_c, T_c) \equiv p_{H_2}^{(c)} = p_{H_2}^{(PL)}(T_c) = 87 \text{ atm.}$ 

Приведенные на рис. 1, 2 результаты позволяют заключить, что модель неидеального решеточного газа для водородной подсистемы гидридов ИМС обеспечивает корректное описание основных особенностей РСТ-диаграмм системы LaNi<sub>5</sub>–H<sub>2</sub> в области неупорядоченных фаз в широком диапазоне давлений. Отличие расчетных значений от экспериментальных не превышает 7 % при определении величины давления в зависимости от температуры в двухфазной области и 12 % – при вычислении значений энергии фазового перехода.



### Заключение

Применение теории возмущений для определения термодинамических свойств неидеального решеточного газа атомов водорода позволяет моделировать фазовые равновесия в гидридах ИМС в области неупорядоченных фаз. Рассчитанные энтальпия и энтропия  $\beta \rightarrow \alpha$ -перехода в системе LaNi<sub>5</sub>-H<sub>2</sub> и давление на плато изотерм растворимости хорошо согласуются с имеющимися экспериментальными данными. Кроме того, получены данные о водородосорбционных свойствах LaNi<sub>5</sub> при повышенных температурах и давлениях. Экспериментальные данные в этой области состояний отсутствуют. Предсказано положение критической точки  $\beta \rightarrow \alpha$ -перехода и поведение изотерм растворимости водорода в закритической области при давлениях до порядка 500 атм.

# Литература

- 1. Marinin V. S., Umerenkova K. R., Shmalko Yu. F., Lobko M. P., Lototsky M. V. Interacting lattice gas model for hydrogen subsystem of metal hydrides. *Functional materials*. 2002. Vol. 9. No. 3. P. 395–401.
- Marinin V. S., Shmalko Yu. F., Umerenkova K. R. Description of phase equilibriums in intermetallic compounds within the perturbation theory. *Hydrogen Materials Sci. and Chemistry Carbon Nanomaterials*. 2006. P. 187–192. <u>https://doi.org/10.1007/978-1-4020-5514-0\_23</u>
- 3. Маринин В. С. Теплофизика альтернативных энергоносителей. Харьков: Форт, 1999. 212 с.
- 4. Яртысь В. А., Бурнашева В. В., Семененко К. Н. Структурная химия гидридов интерметаллических соединений. *Усп. химии.* 1983. Т. 52. № 4. С. 529–562.
- 5. Водород в металлах: в 2-х т. (под ред. Г. Алефельда и И. Фёлькля). Мир, 1981. Т. 1. 475 с., т. 2. 430 с.

ISSN 0131-2928. Journal of Mechanical Engineering, 2019, vol. 22, no. 3

- 6. Shmalko Yu. F., Marinin V. S., Umerenkova K. R. Phase equilibriums in "hydrogen metallic hydride" systems. Kharkov: KNU–IMBP, 2007.
- 7. Van Mal H. H. Stability of ternary hydrides and some applications. *Philips Research Reports Suppl.* 1976. No. 1. P. 1–88.
- Biris A., Bucur R. V., Ghete P., Indrea E., Lupu, D. The solubility of deuterium in LaNi<sub>5</sub>. J. Less Common Metals. 1976. Vol. 49. P. 477–482. <u>https://doi.org/10.1016/0022-5088(76)90059-X</u>

Поступила в редакцию 09.04.2019

# Аналіз термодинамічних характеристик металогідридних систем для зберігання водню з використанням модифікованої схеми теорії збурень

#### В. В. Соловей, А. М. Авраменко, К. Р. Умеренкова

Інститут проблем машинобудування ім. А.М. Підгорного НАН України, 61046, Україна, м. Харків, вул. Пожарського, 2/10

Застосування гідридів інтерметалічних сполук (ІМС) для реалізації робочих процесів термосорбційних компресорів, теплових насосів, систем зберігання, очищення і програмованої подачі водню обумовлено низкою унікальних властивостей цих сорбентів водню. Це, перш за все, те, що насичення воднем ІМС з великою сорбційною ємністю відбувається за порівняно «м'яких» термодинамічних умов, а також вибірковість сорбційних процесів і наявність ефекту термодесорбційного активування атомів і молекул ізотопів водню. Робота присвячена опису фазових рівноваг в гідридах ІМС. Запропонований підхід до проблеми розрахунку фазових рівноваг в металогідридах полягає у визначенні властивостей решіткового газу атомів водню і рівноважної з ним молекулярної фази в рамках єдиного методу - модифікованої теорії збурень. Термодинамічний опис водневої підсистеми в області невпорядкованих α-, β-фаз виконано на базі моделі неідеального (взаємодіючого) решіткового газу атомів водню. Водночас враховано як пряму взаємодію між атомами водню, так і непрямі «деформаційні» вклади в потенціальну енергію внаслідок розширення решітки під час розчинення водню. Моделювання фазових переходів в системах ІМС-водень на базі модифікованої схеми теорії збурень дає правильний опис основних особливостей фазових діаграм в широкому діапазоні тисків водню. За умови рівності хімічних потенціалів H-підсистеми гідриду та  $H_2$ -фази (в розрахунку на атом H) отримані рівняння, що зв'язують тиск газоподібної фази H<sub>2</sub> з параметрами гідриду с і T (фазові діаграми). В запропонованій обчислювальній процедурі не використовуються підгінні параметри або емпіричні кореляції, і вона спирається на атомні характеристики водневої підсистеми та металевої матриці, що мають однозначне фізичне значення. Як об'єкт дослідження обрано гідрид інтерметаліду LaNi<sub>5</sub>. Особливий інтерес викликає розташування критичної точки β→α-переходу в системі LaNi5 – водень, для якої відсутні значення параметрів, отриманих експериментально. В роботі наведені розрахункові значення критичних параметрів β→αпереходу  $T_c=445 \text{ K}$ ,  $p_c=87 \text{ атм.}$  Визначені розрахунковим шляхом дані про термодинамічні параметри  $\alpha \rightarrow \beta$ переходу (ентальпія, ентропія і тиск на плато ізотерм) дають можливість окреслити межі розчинності водню в LaNi<sub>5</sub> за тисків до 500 атм та добре узгоджуються з наявними в літературі експериментальними даними.

Ключові слова: водень, металогідриди, інтерметалеві сполуки, фазові діаграми, решітковий газ.