DYNAMICS AND STRENGTH OF MACHINES

УДК 621.313.322-82

ВЛИЯНИЕ ТЕПЛОВЫХ И МЕХАНИЧЕСКИХ ФАКТОРОВ НА НАПРЯЖЕННОЕ СОСТОЯНИЕ КРУПНЫХ УЗЛОВ ГИДРОГЕНЕРАТОРОВ-ДВИГАТЕЛЕЙ

^{1,2} А. В. Третьяк, канд. техн. наук, <u>alex3tretjak@ukr.net</u>

¹А. Ю. Шуть,

alekspetm@gmail.com

² П. Г. Гакал, д-р техн. наук, <u>pavlo.gakal@gmail.com</u>

¹ ГП «Завод «Электротяжмаш», 61089, Украина, г. Харьков, пр. Московский, 299

² Национальный аэрокосмический университет им. Н. Е. Жуковского «ХАИ», 61070, Украина, г. Харьков, ул. Чкалова, 17

Выполнен детальный анализ конструкции гидрогенераторадвигателя предельной мощности с воздушным охлаждением. Показано, что крестовина гидрогенератора зонтичного типа воспринимает динамические нагрузки, обусловленные силами, действующими в трех плоскостях. При этом их учет аналитическими методами не представляется возможным. Для трехмерного расчета необходимо учесть тепловые и механические факторы, а также особенности применяемого листового проката. В ходе решения поставленной задачи с учетом тепловых нагрузок предлагается дискретное разбиение крестовины на n-е количество участков. Критерий сходимости для решения обратной задачи основан на сохранении общего теплового баланса конструкции с учетом ограниченной точности измерительных приборов. Обоснован выбор допускаемых напряжений с учетом наличия раковин в структуре металла, не превышающих своего класса сплошности для выбранного металлопроката. Предлагается в зону с наименьшими запасами прочности ввести "элементарный дефект" как окружность с геометрическими данными согласно ограничениям по сплошности. При этом коррекция подбора параметров сетки конечных элементов для введенного дефекта осуществляется, как и для пластины с эксцентрично расположенными отверстиями. Сетку уменьшают до того момента, при котором разница по максимальным напряжениям в одних и тех же узлах станет не более 0,04%. Механические нагрузки задаются в классической постановке. В ходе работы установлено, что запасы прочности крупных узлов генератора должны регламентироваться качеством используемого металлопроката, а механические расчеты учитывать тепловые факторы.

Ключевые слова: турбогенератор, механические напряжения, тепловой процесс, дефекты металла.

Введение

Проблема расчета напряженного состояния крупных узлов гидрогенераторов до сегодняшнего дня полностью не решена. Как правило, нересурсные узлы, такие, как крестовины, в процессе своей эксплуатации воспринимают и передают динамические нагрузки от ротора на подшипник, от подшипника к крестовине и от крестовины далее к фундаменту. При этом зачастую допускаемые напряжения не всегда являются ограничивающим фактором. Возникающие вибрации, порожденные недостаточной жесткостью конструкции, могут приводить к разрушению агрегата.

Постановка задачи

Для обеспечения надежной работы гидрогенератора необходимо пересмотреть концепцию расчетов напряженного состояния крестовины и учесть влияние тепловых и механических нагрузок, а также действительную структуру металла, используемого при производстве. Нужно решить следующие задачи:

1. Провести анализ общей конструкции гидрогенератора.

2. Разработать метод определения граничных условий, основанный на экспериментальных данных для обратной тепловой задачи.

3. Представить метод учета дефектов в структуре при выборе допускаемых напряжений.

4. Определить напряженно-деформированное состояние крестовины в трехмерной постановке.

Анализ конструкции гидрогенератора

Конструкция рассматриваемого гидрогенератора-двигателя выполнена в вертикальном исполнении, зонтичного типа с одним направляющим подшипником (1), размещенным в масляной ванне крестовины (3) над ротором (9) и с опорой подпятника (8) на крышке насоса-турбины (см. рис. 1).

[©] А. В. Третьяк, А. Ю. Шуть, П. Г. Гакал, 2018

ДИНАМІКА ТА МІЦНІСТЬ МАШИН

Возбуждение гидрогенератора-двигателя осуществляется от системы тиристорного независимого возбуждения.

Втулка остова ротора (10) соединена с валом насоса-турбины при помощи фланцев. К верхней части втулки ротора крепится вал-надставка, на котором размещаются втулка направляющего подшипника и контактные кольца.

Статор (6) устанавливается на фундамент внутри шахты гидрогенератора-двигателя и крепится к фундаменту с помощью анкерных шпилек (7). На верхнюю полку корпуса статора опирается крестовина с распорными домкратами (4). Рифленое перекрытие крестовины расположено на одном уровне с полом машинного зала.

В центральной части над крестовиной установлена подставка (колпак) (2), внутри которой крепится траверса контактных колец. Перекрытие шахты насоса-турбины, устанавливаемое на балках под ротором гидрогенератора-двигателя, служит площадкой для обслуживания подпятника и тормозов.

Вентиляция гидрогенератора-двигателя осуществляется по замкнутому циклу с частичным отбором горячего воздуха для обогрева машинного зала. Воздухоохладители (5) расположены вокруг корпуса статора гидрогенератора-двигателя. Зоны холодного и горячего воздуха разделены верхним и нижним воздухоразделяющими щитами.

Направление вращения гидрогенератора-двигателя в генераторном режиме – по часовой стрелке, в двигательном режиме – против часовой стрелки, если смотреть сверху.

На рис. 2 представлена расчетная схема передачи усилий от элементов гидроагрегата к фундаментным плитам.

ISSN 0131–2928. Проблеми машинобудування, 2018, Т. 21, № 3

Исходя из представленной схемы можно сделать вывод, что воздействующие нагрузки являются разнофакторными и их учет может быть выполнен лишь в трехмерной постановке.

Для расчета механической прочности крестовины с помощью базового аналитического метода задаются напряжения вдоль одной горизонтальной оси с последующим определением податливости и резонансных частот.

Суммарный прогиб лапы и центральной части будет установлен согласно

$$\overline{U} = \overline{U}_1 + \overline{U}_2 + \overline{U}_3 + \overline{U}_4 + \overline{U}_5,$$

где \overline{U}_1 – прогиб конца лапы от сил выкручивания центральной части; \overline{U}_2 – перемещения, вызванные действием крутящего момента; \overline{U}_3 – перемещения от перерезающей силы; \overline{U}_4 – перемещения от действия сил тяжести на ребра; \overline{U}_5 – тепловые перемещения.

При этом считается, что температура крестовины соответствует температуре элементов агрегата в машинном зале.

В работе [1] представлен новый метод определения теплового состояния крестовины гидрогенератора-двигателя мощностью 300 МВт. Установлена возможность перехода от двухмерной постановки к трехмерной. Однако для решения поставленной задачи необходимо выбрать начальные и граничные условия для тепловой задачи. Согласно методу, указанному в работе [2], тепловое состояние целой конструкции гидроагрегата может быть определено методом СFD в трехмерной постановке. Для задания начальных и граничных условий вначале необходимо установить тепловыделения конструкции

Решение тепловой задачи

Существуют следующие виды потерь для гидрогенераторов-двигателей:

-вентиляционные;

-механические;

-электрические – в обмотках ротора и статора;

–электрические – в активной стали статора и ротора;
–добавочные.

Для сохранения теплового баланса конструкции вентиляционные потери должны компенсировать все остальные.

Однако не всегда удается точно определить добавочные потери, в связи с чем предлагается рассмотреть возможность решения обратной тепловой задачи на основе замеров температур на действующих гидроагрегатах.

Для определения теплового состояния крестовины гидрогенератора необходимо решить обратную тепловую задачу, т. е. восстановить начальные и граничные условия для определения механических напряжений.

Предлагается дискретно разбить крестовину на *n*-е количество участков (см. рис. 3) для решения тепловой задачи.

При этом расчет температур основных элементов конструкции может быть определен как

– температура в центре пластины
$$t_{0k} = t + \frac{q_v \delta}{\alpha} + \frac{q_v \delta^2}{2\lambda}$$

– температура на поверхности пластины $t_{ck} = t + \frac{q_v \delta}{\alpha}$,

– плотность теплового потока $q_k = -\lambda \left(\frac{q_v \delta}{\lambda}\right) = q_v \delta$.

Тогда для установившегося решения, при котором *T*=const, *q*=const, используется критериальное уравнение, где местный и средние коэффициенты теплоотдачи при развитом турбулентном режиме течения воздуха ($\text{Ra} \ge 6.10^{10}$) при *T_w*=const и при *q_w*=const находят по формулам [3]

$$Nu_{f,x} = 0.15 \ Ra_{f,x}^{0.333} \ \varepsilon_t$$
, $\overline{N}u_f = 0.15 \ Ra_f^{0.333} \ \varepsilon_t$.

Определяющими параметрами являются геометрические и температура текучей среды вдали от поверхности теплообмена (за пределами теплового пограничного слоя) $T_0=T_f$.

Переходный режим течения охлаждающей среды, наступающий при числах Релея $10^9 < \text{Ra}_{f,x} < 6 \cdot 10^{10}$, отличается неустойчивостью течения.

Правило сходимости задачи выбирается следующим образом: для любого участка, находящегося в области $[k, k-1] \in [I, n]$, выполняется правило (см. рис. 4)

$$\begin{cases} T_{\text{pacy.}R_k - R_{k-1/2}} - T_{\text{изм.}R_k - R_{k-1/2}} \leq \varepsilon_{\text{изм}} \\ T_{\text{pacy.}R_k} - T_{\text{изм.}R_k} \leq \varepsilon_{\text{изм.}} \\ T_{\text{pacy.}R_{k-1}} - T_{\text{изм.}R_k - 1} \leq \varepsilon_{\text{изм.}} \end{cases}$$

где $T_{\text{расч-}}$ – температура, полученная расчетным методом; $T_{\text{изм-}}$ – измеренная температура; $\varepsilon_{\text{изм-}}$ – погрешность измерения приборов.

При этом теплота с учетом измерительной погрешности рассчитывается по формуле $Q = \sum q_i \pm \varepsilon$, где $\sum_{i=1}^{n} q_i = Q$ – суммарный тепловой поток.

Полное количество теплоты, получаемое (отдаваемое) теплом в процессе охлаждения (нагревания), определяется по следующей формуле: $Q = c_p \rho V(t_0 - t)$, где c_p - удельная теплоемкость металла; ρ – плотность стали; V – рабочий объем конструкции, определяется методами трехмерного моделирования; t_0 – начальная температура; t – текущее значение температуры.

При этом градиент темпа охлаждения (нагревания) *т* будет стремиться к 0, а числа Био и Фу-

рье должны быть постоянными $m = \frac{\alpha F}{c_p \rho V} \Psi$, $\Psi = \frac{\overline{\vartheta}_F}{\overline{\vartheta}_V}$, где α – коэффициент теплоотдачи по воздуху;

F – площадь охлаждаемых элементов; Ψ – коэффициент пропорциональности, равный отношению среднеповерхностной избыточной температуры $\overline{\vartheta}_F$ в стадии регулярного режима к его среднеобъемной температуре $\overline{\vartheta}_V$.

Влияние дефектов металла

Ввиду того что при изготовлении действующих гидроагрегатов используется металлический прокат сталей марки 3 ГОСТ 380-2005 или его ближайших заменителей S235 DINEN 10025-2, в структуре металла могут быть дефекты.

При этом стоит отметить, что явные дефекты должны быть устранены при производстве, а возможность наличия скрытых дефектов должна быть регламентирована методами расчетов.

К дефектам прокатанного и кованого металла относят следующие: явные, скрытые, критические, значительные и малозначительные, исправимые и неисправимые.

К технологическим дефектам относятся разные виды одиночных и групповых трещин, с глубиной до 10–15 мм. При этом выделяют различные виды трещин: штамповочные, трещины напряжения, волосяные или флокены, возникающие внутри толстого проката или поковок (диаметром более 30 мм). Флокены можно наблюдать на макро- и микрошлифах в виде прямых, иногда извилистых и зигзагообразных линий длиной от нескольких десятков долей миллиметра до 10–15 мм и более. В малых сечениях изделий из сильно прокатанной стали (диаметром менее 2–30 мм) флокены никогда не обнаруживаются, как и в литой стали.

Кроме того, бывают и другие виды технологических дефектов: волосовины (длиной 20–30 мм, иногда доходящие до 100–150 мм), рванины, скворечники, закаты и заковы (возникают, когда заусеница

металла или возвышение не сваривается с основной массой проката), а также плены, толщина которых колеблется от десятых долей миллиметра до 3–5 мм и более.

На рис. 5 представлена раковина, находящаяся в теле металла [4]. Ее максимальные размеры строго ограничиваются нормативно-технической документацией, при этом широко применяется 2-й класс сплошности.

Предлагается в зону с наименьшими запасами прочности ввести "элементарный дефект" как окружность с геометрическими данными согласно табл. 1.

Класс сплошности	Показатели сплошности					
	S ₁ , см ²	S ₂ , см ²	S ₃ , см ²	S, %		
				на 1 м ² ,	на площадь	L, мм
				не	единицы	
				более	листового	
					проката, не более	
01	По согласованию изготовителя с потребителем					
0	5	20	1,0	1,0	0,3	30 – для листового проката толщиной до 60 мм
						включительно,
						50 – для листового проката
						толщиной свыше 60 мм
1	10	50	2,0	2,0	0,5	50
2	20	100	2,0	3,0	1,0	100
3	50	250		5,0	2,0	200

Таблица 1. Показатели сплошности толстолистового проката

При этом коррекция подбора параметров сетки конечных элементов для введенного дефекта должна быть осуществлена согласно ГОСТу 25.504-82. Для пластины с эксцентрично расположенными отверстиями толщиной h при растяжении (см. рис. 6) уменьшение сетки должно выполняться до того момента, пока разница по максимальным напряжениям в одних и тех же узлах станет не более 0,04%.

Дальнейшее уменьшение размера конечного элемента сетки будет приводить к незначительному снижению погрешности, что свидетельствует о сеточной независимости задачи. Подобный анализ проводится при решении всех последующих задач.

Максимальные напряжения в зоне локации дефекта превышают средние согласно закону

$$\sigma_{H^{\infty}} = \frac{P}{h(B+b)}, \ \sigma_{HA-C} = \sigma_{H^{\infty}} \frac{\sqrt{1 - (p/b)^2}}{1 - \frac{p}{b} \left[1 - \frac{b}{B} \left(1 - \sqrt{1 - (p/b)^2}\right)\right]},$$

где *P* – действующая нагрузка; *h*, *B*, *b* и *p* – геометрические параметры, представленные на рис. 6.

Результаты исследования напряженно-деформированного состояния крестовины

Решение задачи механической прочности выполнялось в программном комплексе SolidWorksSimulation. В качестве расчетной сетки использованы трехмерные тетраэдральные твердотельные элементы, сгущение сетки выполнялось внутри конструктивных отверстий и в зоне локации дефекта. Условия расчета заданы согласно схеме, представленной на рис. 2. Размер дефекта соответствует 2-му классу сплошности металла.

На рис. 7 и 8 показаны результаты расчета напряженного состояния крестовины, выполненные методом конечных элементов. Поле температур крестовины для данной конструкции дано на рис. 9.

Согласно полученным результатам, можно сделать вывод, что суммарный прогиб лапы и центральной части крестовины может быть рассчитан только в трехмерной постановке, при этом сплошность металла не является определяющей для перемещений. Необходимо отметить, что в части механической прочности наличие допускаемых дефектов согласно требованиям нормативно-технической документации может быть обосновано лишь при выполнении расчетов, учитывающих геометрический, тепловой и силовой факторы, а также особенности изготовления типов листового проката.

DYNAMICS AND STRENGTH OF MACHINES

Выводы

В работе представлен метод определения напряженно-деформированного состояния крестовины гидроагрегата-двигателя большой мощности. Изучены особенности конструкции, определяющее силовое воздействие на крестовину гидрогенератора-двигателя зонтичного типа в трехмерной постановке. Предложенный метод позволяет производить оценку напряженного состояния нересурсных узлов гидроагрегатов с учетом механических и тепловых нагрузок, а также вводить ограничения по сплошности металла на этапах проектирования. Обоснован выбор допустимых напряжений на основе различных факторов для основных типов конструктивных сталей.

Литература

- 1. Третьяк О. В., Шуть О. Ю., Трибушной М. В. Аналіз теплового стану хрестовини гідрогенератора- двигуна великої потужності за особливих умов експлуатації. *Вісн. НТУ «ХПІ»*. Сер. Енергетичні та теплотехнічні процеси й устаткування. 2017. № 11 (1233). С. 49–54.
- 2. Третьяк А. В., Шуть А. Ю., Гакал П. Г., Полиенко В. Р. Особенности математического моделирования теплового состояния гидрогенераторов капсульного типа. *Bicн. HTV «XIII»*. Сер. Електричні машини та електромеханічне перетворення енергії. 2017. № 10 (1232). С. 44–51.
- 3. Красных В. Ю., Королев В. Н. Тепломассообмен. Основные формулы, задачи и способы их решения: сб. задач. Екатеринбург: Урал. федерал. ун-т, 2012. 64 с.
- 4. Технология производства металлопроката. Дефект металла «Раковины от окалины» URL: <u>http://metallopraktik.ru/novosti/defekt-metalla-rakovinyi-ot-okalinyi/</u> (Дата звернення: 5.07.18).

Поступила в редакцию 11.07.2018