ANALYTICAL METHOD FOR PROFILING RADIAL STATOR BLADES OF THE TURBINE STAGES
DOI | https://doi.org/10.15407/pmach2016.03.005 |
Journal | Journal of Mechanical Engineering – Problemy Mashynobuduvannia |
Publisher | A. Podgorny Institute for Mechanical Engineering Problems National Academy of Science of Ukraine |
ISSN | 0131-2928 (Print), 2411-0779 (Online) |
Issue | Vol. 19, no. 3, 2016 (September) |
Pages | 5-11 |
Cited by | J. of Mech. Eng., 2016, vol. 19, no. 3, pp. 5-11 |
Authors
R. A. Rusanov, The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences (14, Fiszera St., Gdańsk 80-231, Poland), e-mail: rrusanov@imp.gda.pl, ORCID: 0000-0003-2930-2574
A. V. Rusanov, A. Podgorny Institute of Mechanical Engineering Problems of NASU (2/10, Pozharsky St., Kharkiv, 61046, Ukraine), e-mail: rusanov@ipmach.kharkov.ua, ORCID: 0000-0002-9957-8974
P. Lampart, The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences (14, Fiszera St., Gdańsk 80-231, Poland), ORCID: 0000-0003-3786-7428
M. A. Chugay, A. Podgorny Institute of Mechanical Engineering Problems of NASU (2/10, Pozharsky St., Kharkiv, 61046, Ukraine), ORCID: 0000-0002-0696-4527
Abstract
An analytical method for constructing profiles of radial blades of turbine stages is proposed. The profile is set in a curvilinear coordinate system, consists of input and output edges, as well as suction and pressure sides described by the 5th and 4th order curves, respectively. An example of a high-loaded radial-axial stage with a profile of a new type of stator, the use of which has significantly improved the aerodynamic characteristics of the flow path, is considered.
Keywords: radial-axial turbine, high-loaded stage, flow path, analytical method of profiling, spatial flow, numerical modeling
References
- Pasquale, D., Ghidoni, A., & Rebay, S. (2013). Shape Optimization of an Organic Rankine Cycle Radial Turbine Nozzle. Journal of Engineering for Gas Turbines and Power, no. 135 (4). https://doi.org/10.1115/1.4023118
- Ventura, C. A. M., Jacobs, P. A., Rowlands, A. S., Petrie-Repar, P. & Sauret, E. (2012). Preliminary design and performance estimation of radial inflow turbines: an automated approach. Journal of Fluids Engineering, 134(3):031102-1-031102-13. https://doi.org/10.1115/1.4006174
- Rusanov, A. V., Moiseev, S. V., Sukhorebryi, P. N., Kos’ianova, A. I, & Rusanov, R. A. (2012). Metod proektirovaniia vysokoeffektivnykh protochnykh chastei turbodetan-dernykh agregatov [Method of designing of high-efficiency flow part of turbo expanding assembly]. Aviatsionno-kosmicheskaia tekhnika i tekhnologiia – Aerospace Engineering and Technology, no. 8(95), pp. 67–72.
- Rusanov, A., Rusanov, R., & Lampart, P. (2015). Designing and updating the flow part of axial and radial-axial turbines through mathematical modelling. Open Engineering, vol. 5, iss. 1. https://doi.org/10.1515/eng-2015-0047
- Tkacz, E., Kozanecka, D., Kozanecki, Z., & Miazga, K. (2011). Investigations of Oil Free Support Systems to Improve the Reliability of ORC Hermetic High Speed Turbomachinery. Mechanics and Mechanical Engineering, vol. 15, no. 3, pp. 355–365.
- Uusitalo, A., Honkatukia, J., Turunen-Saaresti, T., Larjola, J., & Colonna, P. (2011). Suitability of siloxanes for a mini ORC turbogenerator based on high-speed technology. ORC2011 seminar, TU Delft in Netherlands, 2011.
- Klonowicz, P., Heberle, F., Preißinger, M., & Brüggemann, D. (2014). Significance of loss correlations in performance prediction of small scale, highly loaded turbine stages working in Organic Rankine Cycles. Energy, vol. 72, pp. 322–330. https://doi.org/10.1016/j.energy.2014.05.040
- Kurzrock, J. W. (1989). Experimental Investigation of Supersonic Turbine Performance. Am. Soc. Mech. Eng, 89-GT-238. https://doi.org/10.1115/89-GT-238
- Rusanov, A. V., Pashchenko, N. V., & Kos’ianova, A. I. (2009). Metod analiticheskogo profilirovaniia lopatochnykh ventsov protochnykh chastei osevykh turbin [Method of the analytical profiling of blading of flow part of axial turbines. Vostochno-Evropeiskii zhurnal peredovykh tehnologii – Eastern-European Journal of Enterprise Technologies, iss. 2/7 (38), pp. 32 – 37.
- Boyko, A. V. & Govorushchenko, Yu. N. (1989). Osnovy teorii optimalnogo proektirovaniia protochnoi chasti osevyh turbomashin [Bases of theory of the optimal planning of flow part of axial turbomachines]. Kharkov: Vyshcha shkola, 217 p.
- Rusanov, A., Lampart, P., Rusanov, R., & Bykuc, S. (2013). Elaboration of the flow system for a cogeneration ORC turbine. Proc 12th Conf on Power System Engineering, Thermodynamics & Fluid Flow – ES 2013, Pilzen, Czech Republic, 13–14 June 2013, Publisher: University of West Bohemia, 10 p.
- Rusanov, A. V. & Yershov, S. V. (2008). Mathematical modelling of unsteady gasdynamic processes in the turbomachine settings. Kharkov, A. Podgorny Institute of Mechanical Engineering Problems of NASU, 275 p.
- Yershov, S. V. & Rusanov, A. V. (1996). C. a. The complex program of calculation of three-dimensional gas flows in multistage turbomachinery «FlowER». State Agency of Ukraine on Copyright and Related Rights, PA no.77, 1 p.
Received 10 September 2016
Published 30 September 2016