ANALYTICAL METHOD FOR PROFILING RADIAL STATOR BLADES OF THE TURBINE STAGES

DOI https://doi.org/10.15407/pmach2016.03.005
Journal Journal of Mechanical Engineering – Problemy Mashynobuduvannia
Publisher A. Podgorny Institute for Mechanical Engineering Problems
National Academy of Science of Ukraine
ISSN 0131-2928 (Print), 2411-0779 (Online)
Issue Vol. 19, no. 3, 2016 (September)
Pages 5-11
Cited by J. of Mech. Eng., 2016, vol. 19, no. 3, pp. 5-11

 

Authors

R. A. Rusanov, The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences (14, Fiszera St., Gdańsk 80-231, Poland), e-mail: rrusanov@imp.gda.pl, ORCID: 0000-0003-2930-2574

A. V. Rusanov, A. Podgorny Institute of Mechanical Engineering Problems of NASU (2/10, Pozharsky St., Kharkiv, 61046, Ukraine), e-mail: rusanov@ipmach.kharkov.ua, ORCID: 0000-0002-9957-8974

P. Lampart, The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences (14, Fiszera St., Gdańsk 80-231, Poland), ORCID: 0000-0003-3786-7428

M. A. Chugay, A. Podgorny Institute of Mechanical Engineering Problems of NASU (2/10, Pozharsky St., Kharkiv, 61046, Ukraine), ORCID:  0000-0002-0696-4527

 

Abstract

An analytical method for constructing profiles of radial blades of turbine stages is proposed. The profile is set in a curvilinear coordinate system, consists of input and output edges, as well as suction and pressure sides described by the 5th and 4th order curves, respectively. An example of a high-loaded radial-axial stage with a profile of a new type of stator, the use of which has significantly improved the aerodynamic characteristics of the flow path, is considered.

 

Keywords: radial-axial turbine, high-loaded stage, flow path, analytical method of profiling, spatial flow, numerical modeling

 

References

  1. Pasquale, D., Ghidoni, A., & Rebay, S. (2013). Shape Optimization of an Organic Rankine Cycle Radial Turbine Nozzle. Journal of Engineering for Gas Turbines and Power, no. 135 (4). https://doi.org/10.1115/1.4023118
  2. Ventura, C. A. M., Jacobs, P. A., Rowlands, A. S., Petrie-Repar, P. & Sauret, E. (2012). Preliminary design and performance estimation of radial inflow turbines: an automated approach. Journal of Fluids Engineering, 134(3):031102-1-031102-13. https://doi.org/10.1115/1.4006174
  3. Rusanov, A. V., Moiseev, S. V., Sukhorebryi, P. N., Kos’ianova, A. I, & Rusanov, R. A. (2012). Metod proektirovaniia vysokoeffektivnykh protochnykh chastei turbodetan-dernykh agregatov [Method of designing of high-efficiency flow part of turbo expanding assembly]. Aviatsionno-kosmicheskaia tekhnika i tekhnologiia – Aerospace Engineering and Technology, no. 8(95), pp. 67–72.
  4. Rusanov, A., Rusanov, R., & Lampart, P. (2015). Designing and updating the flow part of axial and radial-axial turbines through mathematical modelling. Open Engineering, vol. 5, iss. 1. https://doi.org/10.1515/eng-2015-0047
  5. Tkacz, E., Kozanecka, D., Kozanecki, Z., & Miazga, K. (2011). Investigations of Oil Free Support Systems to Improve the Reliability of ORC Hermetic High Speed Turbomachinery. Mechanics and Mechanical Engineering, vol. 15, no. 3, pp. 355–365.
  6. Uusitalo, A., Honkatukia, J., Turunen-Saaresti, T., Larjola, J., & Colonna, P. (2011). Suitability of siloxanes for a mini ORC turbogenerator based on high-speed technology. ORC2011 seminar, TU Delft in Netherlands, 2011.
  7. Klonowicz, P., Heberle, F., Preißinger, M., & Brüggemann, D. (2014). Significance of loss correlations in performance prediction of small scale, highly loaded turbine stages working in Organic Rankine Cycles. Energy, vol. 72, pp. 322–330.  https://doi.org/10.1016/j.energy.2014.05.040
  8. Kurzrock, J. W. (1989). Experimental Investigation of Supersonic Turbine Performance. Am. Soc. Mech. Eng, 89-GT-238.  https://doi.org/10.1115/89-GT-238
  9. Rusanov, A. V., Pashchenko, N. V., & Kos’ianova, A. I. (2009). Metod analiticheskogo profilirovaniia lopatochnykh ventsov protochnykh chastei osevykh turbin [Method of the analytical profiling of blading of flow part of axial turbines. Vostochno-Evropeiskii zhurnal peredovykh tehnologii – Eastern-European Journal of Enterprise Technologies, iss. 2/7 (38), pp. 32 – 37.
  10. Boyko, A. V. & Govorushchenko, Yu. N. (1989). Osnovy teorii optimalnogo proektirovaniia protochnoi chasti osevyh turbomashin [Bases of theory of the optimal planning of flow part of axial turbomachines]. Kharkov: Vyshcha shkola, 217 p.
  11. Rusanov, A., Lampart, P., Rusanov, R., & Bykuc, S. (2013). Elaboration of the flow system for a cogeneration ORC turbine. Proc 12th Conf on Power System Engineering, Thermodynamics & Fluid Flow – ES 2013, Pilzen, Czech Republic, 13–14 June 2013, Publisher: University of West Bohemia, 10 p.
  12. Rusanov, A. V. & Yershov, S. V. (2008). Mathematical modelling of unsteady gasdynamic processes in the turbomachine settings. Kharkov, A. Podgorny Institute of Mechanical Engineering Problems of NASU, 275 p.
  13. Yershov, S. V. & Rusanov, A. V. (1996). C. a. The complex program of calculation of three-dimensional gas flows in multistage turbomachinery «FlowER». State Agency of Ukraine on Copyright and Related Rights, PA no.77, 1 p.

 

Received 10 September 2016

Published 30 September 2016