ANALYTICAL IDENTIFICATION OF THREE-DIMENSIONAL GEOMETRIC OBJECTS ACCORDING TO THE INFORMATION ABOUT THE SHAPE OF THEIR SECTIONS

DOI https://doi.org/10.15407/pmach2017.01.045
Journal Journal of Mechanical Engineering – Problemy Mashynobuduvannia
Publisher A. Podgorny Institute for Mechanical Engineering Problems
National Academy of Science of Ukraine
ISSN 0131-2928 (Print), 2411-0779 (Online)
Issue Vol. 20, no. 1, 2017 (March)
Pages 45-51
Cited by J. of Mech. Eng., 2017, vol. 20, no. 1, pp. 45-51

 

Authors

Yu. S. Litvinova, A. Podgorny Institute of Mechanical Engineering Problems of NASU (2/10, Pozharsky St., Kharkiv, 61046, Ukraine), e-mail: litjuli56@gmail.com

K. V. Maksymenko-Sheiko, A. Podgorny Institute of Mechanical Engineering Problems of NASU (2/10, Pozharsky St., Kharkiv, 61046, Ukraine), e-mail:  m-sh@ipmach.kharkov.ua, ORCID: 0000-0002-7064-2442

T. I. Sheyko, A. Podgorny Institute of Mechanical Engineering Problems of NASU (2/10, Pozharsky St., Kharkiv, 61046, Ukraine), e-mail: sheyko@ipmach.kharkov.ua, ORCID: 0000-0003-3295-5998

 

Abstract

This paper investigates the possibilities and proposes techniques for the functional representation of a geometric object in 3D using information about the equations of the boundaries of the sections of the object being restored. Geometrical objects are constructed using the apparatus of the R-functions theory and a software product supporting it. This method of constructing geometric objects is a universal tool for modeling and visualization. The use of letter parameters significantly expands the design possibilities for the implementation of the modeling of geometric objects. The model stored in the computer’s memory allows a researcher to manipulate the resulting spatial images using the software of interactive three-dimensional computer graphics, varying the values of the literal parameters. The constructed mathematical models of geometric objects are their analytical identification, as evidenced by the visualization of the obtained equations.

 

Keywords: R-functions, spline, modeling, visualization, three-dimensional objects

 

References

  1. Rvachev, V. L. (1982). Teoriya R-funktsiy i nekotoryye yeye prilozheniya [The R-functions theory and some of its applications]. Kiyev: Naukova Dumka, 552 p. (in Russian).
  2. Maksimenko-Sheyko, K. V. (2009). R-funktsii v matematicheskom modelirovanii geometricheskikh obektov i fizicheskikh poley [R-functions in mathematical modeling of geometric objects and physical fields]. Kharkov: A. Podgorny Institute of Mechanical Engineering Problems of NASU, 306 p. (in Russian).
  3. Lytvyn, O. M. (2002). Interlinatsiia funktsii ta deiaki yii zastosuvannia [Interlination of functions and some of its applications]. Kharkiv: Osnova, 544 p. (in Ukrainian).
  4. Maksimenko-Sheyko, K. V., Matsevity, A. M., Tolok, A. V., & Sheyko, T. I. (2007). R-funktsii i obratnaya zadacha analiticheskoy geometrii v trekhmernom prostranstve [R-functions and inverse problem of analytic geometry in three-dimensional space]. Informatsionnyye tekhnologiiInformation technologies, no. 10, pp. 23–32 (in Russian).
  5. Rvachev, V. L., Tolok, A. V., Uvarov, R. A., & Sheyko, T. I. (2000). Novyye podkhody k postroyeniyu uravneniy trekhmernykh lokusov s pomoshch’yu R-funktsiy [New approaches to the construction of three-dimensional equations of the loci using the R-functions]. Visnyk Zaporizkoho derzhavnoho universytetuZNU Herald, no. 2, pp. 119–130 (in Russian).
  6. Maksimenko-Sheyko, K. V. & Sheyko, T. I. (2010). R-funktsii v matematicheskom modelirovanii geometricheskikh ob”yektov v 3D po informatsii v 2D [R-functions in mathematical modeling of geometrical objects in 3D under the information in 2D]. Visnyk Zaporizkoho natsionalnoho universytetuVisnyk of Zaporizhzhya National University, no. 1, pp. 98–104 (in Russian).

 

Received 26 December 2016

Published 30 March 2017