Multi-Cycle Fatigue of Composite Three-Layer Plates with Honeycomb Structure Made by Additive FDM Technologies

DOI https://doi.org/10.15407/pmach2022.03.016
Journal Journal of Mechanical Engineering – Problemy Mashynobuduvannia
Publisher A. Pidhornyi Institute for Mechanical Engineering Problems
National Academy of Science of Ukraine
ISSN  2709-2984 (Print), 2709-2992 (Online)
Issue Vol. 25, no. 3, 2022 (September)
Pages 16-28
Cited by J. of Mech. Eng., 2022, vol. 25, no. 3, pp. 16-28

 

Authors

Borys V. Uspenskyi, A. Pidhornyi Institute of Mechanical Engineering Problems of NASU (2/10, Pozharskyi str., Kharkiv, 61046, Ukraine), e-mail: Uspensky.kubes@gmail.com, ORCID: 0000-0001-6360-7430

Ihor I. Derevianko, Yuzhnoye State Design Office (3, Krivorizka str., Dnipro, 49008, Ukraine), e-mail: dereviankoii2406@gmail.com, ORCID: 0000-0002-1477-3173

Kostiantyn V. Avramov, A. Pidhornyi Institute of Mechanical Engineering Problems of NASU (2/10, Pozharskyi str., Kharkiv, 61046, Ukraine), Kharkiv National University of Radio Electronics (14, Nauky ave., Kharkiv, 61166, Ukraine), National Aerospace University “Kharkiv Aviation Institute” (17, Chkalov str., Kharkiv, 61070, Ukraine), e-mail: kvavramov@gmail.com, ORCID: 0000-0002-8740-693X

Oleh F. Polishchuk, A. Pidhornyi Institute of Mechanical Engineering Problems of NASU (2/10, Pozharskyi str., Kharkiv, 61046, Ukraine), e-mail: PolischukOleg@nas.gov.ua, ORCID: 0000-0003-1266-9847

Oleksandr F. Salenko, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” (37, Peremohy ave., Kyiv, 03056, Ukraine), ORCID: 0000-0002-5685-6225

 

Abstract

The multi-cycle fatigue of three-layer plates with honeycomb structure, which was manufactured using additive FDM technologies from polylactide, is considered. Carbon fiber based on the SIGRAPREG C U200-0/NF-E310/30% pre-preg is chosen as a material for the upper and lower covers. Fatigue analysis of three-layer plates with honeycomb structure is based on their vibration tests. To study the fatigue characteristics of honeycomb structures, special samples were made. Fatigue characteristics of structures are studied on three-layer samples using carbon-plastic sheathings. The experiment was accompanied by finite element simulation of fatigue tests in the ANSYS software complex. The fatigue properties of three-layer plates are studied.

 

Keywords: honeycomb structure, additive FDM technology, three-layer plates, fatigue tests, S-N curve

 

Full text: Download in PDF

 

References

  1. Matthews, N. (2018). Additive metal technologies for aerospace sustainment. Aircraft Sustainment and Repair, pp. 845–862. https://doi.org/10.1016/B978-0-08-100540-8.00015-7.
  2. Boparai, K. S. & Singh, R. (2017). Advances in fused deposition modeling. Reference Module in Materials Science and Materials Engineering. https://doi.org/10.1016/B978-0-12-803581-8.04166-7.
  3. Xu, M., Liu, D., Wang, P., Zhang, Z., Jia, H., Lei, H., & Fang, D. (2020). In-plane compression behavior of hybrid honeycomb metastructures: Theoretical and experimental studies. Aerospace Science and Technology, vol. 106, paper ID 106081. https://doi.org/10.1016/j.ast.2020.106081.
  4. Chen, Y., Li, T., Jia, Z., Scarpa, F., Yao, C., & Wang, L. (2018). 3D printed hierarchical honeycombs with shape integrity under large compressive deformations. Materials and Design, vol. 137, pp. 226–234. https://doi.org/10.1016/j.matdes.2017.10.028.
  5. Parsons, E. M. (2019). Lightweight cellular metal composites with zero and tunable thermal expansion enabled by ultrasonic additive manufacturing: Modeling, manufacturing, and testing. Composite Structures, vol. 223, paper ID 110656. https://doi.org/10.1016/j.compstruct.2019.02.031.
  6. Abbadi, A., Tixier, C., Gilgert, J., & Azari, Z. (2015). Experimental study on the fatigue behaviour of honeycomb sandwich panels with artificial defects. Composite Structures, vol. 120, pp. 394–405. https://doi.org/10.1016/j.compstruct.2014.10.020.
  7. Belingardi, G., Martella, P., & Peroni, L. (2007). Fatigue analysis of honeycomb-composite sandwich beams. Composites Part A: Applied Science and Manufacturing, vol. 38, iss. 4, pp. 1183–1191. https://doi.org/10.1016/j.compositesa.2006.06.007.
  8. Belouettar, S., Abbadi, A., Azari, Z., Belouettar, R. & Freres, P. (2009). Experimental investigation of static and fatigue behaviour of composites honeycomb materials using four point bending tests. Composite Structures, vol. 87, iss. 3, pp. 265–273. https://doi.org/10.1016/j.compstruct.2008.01.015.
  9. Jen, Y.-M., Ko, C.-W., & Lin, H.-B. (2009). Effect of the amount of adhesive on the bending fatigue strength of adhesively bonded aluminum honeycomb sandwich beams. International Journal of Fatigue, vol. 31, iss. 3, pp. 455–462. https://doi.org/10.1016/j.ijfatigue.2008.07.008.
  10. Bianchi, G., Aglietti, G. S., & Richardson, G. (2012). Static and fatigue behaviour of hexagonal honeycomb cores under in-plane shear loads. Applied Composite Materials, vol. 19, pp. 97–115. https://doi.org/10.1007/s10443-010-9184-5.
  11. Jen, Y.-M. & Chang, L.-Y. (2008). Evaluating bending fatigue strength of aluminum honeycomb sandwich beams using local parameters. International Journal of Fatigue, vol. 30, iss. 6, pp. 1103–1114. https://doi.org/10.1016/j.ijfatigue.2007.08.006.
  12. Jen, Y.-M. & Lin, H.-B. (2013). Temperature-dependent monotonic and fatigue bending strengths of adhesively bonded aluminum honeycomb sandwich beams. Materials and Design, vol. 45, pp. 393–406. https://doi.org/10.1016/j.matdes.2012.09.028.
  13. Cote, F., Fleck, N. A., & Deshpande, V. S. (2007). Fatigue performance of sandwich beams with a pyramidal core. International Journal of Fatigue, vol. 29, iss. 8, pp. 1402–1412. https://doi.org/10.1016/j.ijfatigue.2006.11.013.
  14. Burman, M. & Zenkert, D. (2000). Fatigue of undamaged and damaged honeycomb sandwich beams. Journal of Sandwich Structures and Materials, vol. 2, iss. 1, pp. 50–74. https://doi.org/10.1177/109963620000200103.
  15. Abbadi, A., Azari, Z., Belouettar, S., Gilgert, J., & Freres, P. (2010). Modelling the fatigue behaviour of composites honeycomb materials (aluminium/aramide fibre core) using four-point bending tests. International Journal of Fatigue, vol. 32, iss. 11, pp. 1739–1747. https://doi.org/10.1016/j.ijfatigue.2010.01.005.
  16. Whitworth, H. A. (1998). A stiffness degradation model for composite laminates under fatigue loading. Composite Structures, vol. 40, iss. 2, pp. 95–101. https://doi.org/10.1016/S0263-8223(97)00142-6.
  17. Boukharouba, W., Bezazi, A., & Scarpa, F. (2014). Identification and prediction of cyclic fatigue behavior in sandwich panels. Measurement, vol. 53, pp. 161–170. https://doi.org/10.1016/j.measurement.2014.03.041.
  18. Catapano, A. & Montemurro, M. (2014). A multi-scale approach for the optimum design of sandwich plates with honeycomb core. Part I: homogenisation of core properties. Composite Structures, vol. 118, pp. 664–676. https://doi.org/10.1016/j.compstruct.2014.07.057.

 

Received 11 May 2022

Published 30 September 2022