Aeroelastic Characteristics of Rotor Blades of Last Stage of a Powerful Steam Turbine

DOI https://doi.org/10.15407/pmach2023.01.006
Journal Journal of Mechanical Engineering – Problemy Mashynobuduvannia
Publisher Anatolii Pidhornyi Institute for Mechanical Engineering Problems
of National Academy of Science of Ukraine
ISSN  2709-2984 (Print), 2709-2992 (Online)
Issue Vol. 26, no. 1, 2023 (March)
Pages 6-14
Cited by J. of Mech. Eng., 2023, vol. 26, no. 1, pp. 6-14

 

Authors

Liubov V. Kolodiazhna, Anatolii Pidhornyi Institute of Mechanical Engineering Problems of NAS of Ukraine (2/10, Pozharskyi str., Kharkiv, 61046, Ukraine), e-mail: gnesin@ukr.net, ORCID: 0000-0001-5469-4325

Yurii A. Bykov, Anatolii Pidhornyi Institute of Mechanical Engineering Problems of NAS of Ukraine (2/10, Pozharskyi str., Kharkiv, 61046, Ukraine), e-mail: bykow@ipmach.kharkov.ua, ORCID: 0000-0001-7089-8993

 

Abstract

Blades of powerful steam turbines are subjected to significant unsteady loads, which, in some cases, can lead to the appearance of self-excited oscillations or auto-oscillations. These fluctuations are extremely dangerous and negatively affect the life time of the blading. When developing new or upgrading existing turbine stages, it is necessary to carry out research on the aeroelastic behavior of the rotor blades. As a result of the modernization of a low-pressure cylinder of a 1000 MW steam turbine, the length of the rotor blades of the last stage increased to 1650 mm. In this regard, a numerical analysis of the aeroelastic characteristics of the last-stage rotor blades in the nominal operation mode was carried out. The analysis used the method of solving the coupled problem of unsteady aerodynamics and elastic blade vibrations, which allows the prediction of the amplitude-frequency spectrum of unsteady loads and blade vibrations in a viscous gas flow. The paper presents the results of numerical analysis of aeroelastic characteristics of the last stage rotor blades both for the mode of controlled harmonic oscillations with a given amplitude and inter-blade phase shift, and for the mode of coupled oscillations of the blades under influence of unsteady aerodynamic forces. The results of the simulation of coupled oscillations of blades for the first five natural forms are presented in the form of the time distribution of displacement of the blade peripheral cross-section, as well as the time distribution of forces and moments acting on the peripheral cross-section. The corresponding amplitude-frequency spectra of displacements and loads in the peripheral section are also given. The results of the calculations showed a positive damping of oscillations, the absence of flutter and auto-oscillations for the first five natural forms of oscillations of the blades in the nominal operation mode of the steam turbine.

 

Keywords: aeroelasticity, flutter, steam turbine, modal method, CFD.

 

Full text: Download in PDF

 

References

  1. Rzadkowski, R., Surwilo, J., Kubitz, L., & Szymaniak, M. (2018). Unsteady forces in LP last stage 380 MW steam turbine rotating and non-vibrating rotor blades with exhaust hood. Journal of Vibration Engineering & Technologies, vol. 6, no. 5, pp. 357–368. https://doi.org/10.1007/s42417-018-0055-y.
  2. Petrie-Repar, P., Fuhrer, C., Grübel, M., & Vogt, D. (2015). Two-dimensional steam turbine flutter test case. ISUAAAT2014. The 14th International Symposium on Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines, 8th–11th September 2015, Stockholm, Sweden. New York: Curran Associates, Inc., pp. 33–43.
  3. Drewczyński, M., Rzadkowski, R., Maurin, A., & Marszałek, P. (2015). Free vibration of a mistuned steam turbine last stage bladed disc. Proceedings of ASME TURBO EXPO 2015, June 15–19, Montreal, Canada. New York: ASME, article no. GT 2015-26011. https://doi.org/10.1115/GT2015-42080.
  4. Sun, T., Petrie-Repar, P., Vogt, D. M., & Hou, A. (2019). Detached-eddy simulation applied to aeroelastic stability analysis in a last-stage steam turbine blade. ASME. Journal of Turbomachinery, vol. 141, iss. 9, article no. 091002. https://doi.org/10.1115/1.4043407.
  5. Sabale, A. K. & Gopal, N. K. V. (2019). Nonlinear aeroelastic analysis of large wind turbines under turbulent wind conditions. AIAA Journal, vol. 57, no. 10, pp. 4416−4432. https://doi.org/10.2514/1.J057404.
  6. Vahdati, M., Simpson, G., & Imregun, M. (2011). Mechanisms for wide-chord fan blade flutter. ASME. Journal of Turbomachinery, vol. 133, iss. 4, article no. 041029. https://doi.org/10.1115/1.4001233.
  7. Romera, D. & Corral, R. (2021). Nonlinear stability analysis of a generic fan with distorted inflow using passage-spectral method. ASME. Journal of Turbomachinery, vol. 143, iss. 6, article no. 061001. https://doi.org/10.1115/1.4050144.
  8. Stapelfeldt, S. & Vahdati, M. (2019). Improving the flutter margin of an unstable fan blade. ASME. Journal of Turbomachinery, vol. 141, iss. 7, article no. 071006. https://doi.org/10.1115/1.4042645.
  9. Dong, X., Zhang, Y., Zhang, Z., & Lu, X. (2020). Effect of tip clearance on the aeroelastic stability of a wide-chord fan rotor. ASME. Journal of Engineering for Gas Turbines and Power, vol. 142, iss. 9, article no. 091010. https://doi.org/10.1115/1.4048020.
  10. Vahdati, M. & Cumpsty, N. (2018). Aeroelastic instability in transonic fans. ASME. Journal of Engineering for Gas Turbines and Power, vol. 138, iss. 2, article no. 022604. https://doi.org/10.1115/1.4031225.
  11. Hanschke, B., Kühhorn, A., Schrape, S., & Giersch, T. (2019). Consequences of borescope blending repairs on modern high-pressure compressor blisk aeroelasticity. ASME. Journal of Turbomachinery, vol. 141, iss. 2, article no. 021002. https://doi.org/10.1115/1.4041672.
  12. Besem, F. M. & Kielb, R. E. (2017). Influence of the tip clearance on a compressor blade aerodynamic damping. Journal of Propulsion and Power, vol. 33, no. 1, pp. 227–233. https://doi.org/10.2514/1.B36121.
  13. Gan, J., Im, H., & Zha, G. (2017). Stall flutter simulation of a transonic axial compressor stage using a fully coupled fluid-structure interaction. 55th AIAA Aerospace Sciences Meeting, article no. AIAA 2017-0783. https://doi.org/10.2514/6.2017-0783.
  14. Vallon, A., Herran, M., Ficat-Andrieu, V., & Detandt, Y. (2018). Numerical investigations of flutter phenomenon in compressor stages of helicopter engines. 2018 AIAA/CEAS Aeroacoustics Conference, article no. AIAA 2018-4091. https://doi.org/10.2514/6.2018-4091.
  15. Corral, R., Greco, M., & Vega, A. (2019). Tip-shroud labyrinth seal effect on the flutter stability of turbine rotor blades. ASME. Journal of Turbomachinery, vol. 141, iss. 10, article no. 101006. https://doi.org/10.1115/1.4043962.
  16. Huang, H., Liu, W., Petrie-Repar, P., & Wang, D. (2021). An efficient aeroelastic eigenvalue method for analyzing coupled-mode flutter in turbomachinery. ASME. Journal of Turbomachinery, vol. 143, iss. 2, article no. 021010. https://doi.org/10.1115/1.4048294.
  17. Ojha, V., Fidkowski, K. J., & Cesnik, C. E. S. (2021). Adaptive high-order fluid-structure interaction simulations with reduced mesh-motion errors. AIAA Journal, vol. 59, no. 6, pp. 2084–2101. https://doi.org/10.2514/1.J059730.
  18. Rzadkowski, R., Gnesin, V., Kolodyazhnaya, L., & Szczepanik, R. (2019). Unsteady rotor blade forces of 3D transonic flow through steam turbine last stage and exhaust hood with vibrating blades. In: Mathew, J., Lim, C., Ma, L., Sands, D., Cholette, M., & Borghesani, P. (eds) Asset Intelligence through Integration and Interoperability and Contemporary Vibration Engineering Technologies. Lecture Notes in Mechanical Engineering. Cham: Springer, pp. 523−531. https://doi.org/10.1007/978-3-319-95711-1_52.
  19. Rzadkowski, R., Gnesin V., Kolodyazhnaya L. Aeroelasticity analysis of unsteady rotor blade forces and displacements in LP last stage steam turbine with various pressure distributions the stage exit. Journal of Vibration Engineering & Technologies. 2018. Vol. 6. No. 5. P. 333−337. https://doi.org/10.1007/s42417-018-0049-9.
  20. Rzadkowski, R., Gnesin, V., Kolodyazhnaya, L., & Kubitz, L. (2018). Aeroelastic behaviour of a 3.5 stage aircraft compressor rotor blades following a bird strike. Journal of Vibration Engineering & Technologies, vol. 6, pp. 281−287. https://doi.org/10.1007/s42417-018-0044-1.
  21. Rzadkowski, R., Kubitz, L., Gnesin, V., & Kolodyazhnaya, L. (2018). Flutter of long blades in a steam turbine. Journal of Vibration Engineering & Technologies, vol. 6, pp. 289−296. https://doi.org/10.1007/s42417-018-0040-5.
  22. Donchenko, V. V., Hnesin, V. I., Kolodiazhna, L. V., Kravchenko, I. F., & Petrov, O. V. (2020). Prohnozuvannia flatera lopatkovoho vintsia ventyliatora aviatsiinoho dvyhuna [Predicting the flutter of the fan row in the aircraft engine]. Visnyk NTU «KhPI». Seriia: Enerhetychnita teplotekhnichni protsesy y ustatkuvanniaNTU “KhPI” Bulletin: Power and heat engineering processes and equipment, no. 2 (4), pp. 11–17 (in Ukrainian). https://doi.org/10.20998/2078-774X.2020.02.02.
  23. Baldwin, B. & Lomax, H. (1978). Thin layer approximation and algebraic model for separated turbulent flow. AIAA. 16th Aerospace Sciences Meeting, paper 78–0257, pp. 1−45. https://doi.org/10.2514/6.1978-257.
  24. Rusanov, A. V., Shvetsov, V. L., Alyokhina, S.V., Pashchenko, N. V., Rusanov, R. A., Ishchenko, M. H., Slaston, L. O., & Sherfedinov, R. B. (2020). The efficiency increase of the steam turbine low pressure cylinder last stage by the blades spatial profiling. Journal of Mechanical Engineering – Problemy Mashynobuduvannia, vol. 23, no. 1, pp. 6−14. https://doi.org/10.15407/pmach2020.01.006.
  25. Gnesin, V. I., Kolodiazhnaya, L. V., & Rzadkowski, R. (2018). Aeroelastic behaviour of turbine blade row in 3D viscous flow. Journal of Mechanical Engineering – Problemy Mashynobuduvannia, vol. 21, no. 1, pp. 19−30. https://doi.org/10.15407/pmach2018.01.019.

 

Received 31 January 2023

Published 30 March 2023