Plasma Coatings Based on Self-Fluxing NiCrBSi Alloy with Improved Wear Resistance Properties

DOI https://doi.org/10.15407/pmach2023.03.054
Journal Journal of Mechanical Engineering – Problemy Mashynobuduvannia
Publisher Anatolii Pidhornyi Institute for Mechanical Engineering Problems
National Academy of Science of Ukraine
ISSN  2709-2984 (Print), 2709-2992 (Online)
Issue Vol. 26, no. 3, 2023 (September)
Pages 54-64
Cited by J. of Mech. Eng., 2023, vol. 26, no. 3, pp. 54-64

 

Author

Pavlo A. Sytnykov, National Technical University “Kharkiv Polytechnic Institute” (2, Kyrpychova str., Kharkiv, 61002, Ukraine), e-mail: pavel.welder@ukr.net, ORCID: 0000-0001-6656-0180

 

Abstract

The structure and properties of plasma coatings sprayed with a composite material based on a self-fluxing NiCrBSi alloy (PG-10N-01 alloy) modified with a composite material obtained by self-propagating high-temperature synthesis were studied. Titanium powders, carbon black, aluminum, iron oxide, PT-NA-01 thermosetting powder and PGOSA-0 refractory clay were used as the initial components of modified with a composite material. Mixing and mechanical activation of the initial powders was carried out in a BM-1 ball mill for 15 minutes at 130 rpm in a ratio of 1 to 40 of the mass of the charge to the mass of the falling bodies (steel balls with a diameter of 6 mm). Initiation of the self-propagating high-temperature synthesis was carried out using a special device by introducing a heated nichrome spiral. The process of coatings spraying was performed on the MPN-004 microplasma spraying unit at a current of 45 A, a voltage of 30 V with a distance of 100 mm on samples made of 65G steel with a thickness of 3 mm. Argon was used as a plasma-forming and shielding gas. In order to substantiate the feasibility of the self-propagating high-temperature synthesis, a part of the samples was sprayed with a self-fluxing alloy PG-10N-01 with the addition of a mechanical mixture of starting powders. It was established that as a result of plasma spraying of the PG-10N-01 alloy and the composite material of the modified with a composite material + PG-10N-01 composition, coatings with a dense and multiphase structure are formed. The microstructure of the PG-10N-01 alloy coating consists of a solid solution based on nickel (γ-Ni) with inclusions of nickel borides Ni3B and chromium carbides Cr3C2. When adding modified with a composite material in a nickel-based solid solution, in addition to the phases indicated above, borides of titanium TiB2, carbides of titanium TiC and silicon SiC were detected. Their presence leads to an increase in the microhardness of such coatings and their greater wear resistance under conditions of abrasive wear in comparison with the spraying coating of the PG-10H-01 alloy.

 

Keywords: self-propagating high-temperature synthesis (SHS process), composite material, spraying, plasma coating, structure, phase composition, microhardness, wear resistance

 

Full text: Download in PDF

 

References

  1. Iushchenko, K. A., Borysov, Yu. S., Kuznetsov, V. D., & Korzh, V. M. (2007). Inzheneriia poverkhni [Surface engineering]. Kyiv: Naukova dumka, 553 p. (in Ukrainian).
  2. Lobanov, L. M. (eds.) (2018). Nauka pro materialy: dosiahnennia ta perspektyvy [Materials science: Achievements and prospects]: in 2 vols. Vol. 1. Kyiv: Akademperiodyka, 652 p. (in Ukrainian).
  3. Makino, A. (2001). Fundamental aspects of the heterogeneous flame in the self-propagating high-temperature synthesis (SHS) process. Progress in Energy and Combustion Science, vol. 27, iss. 1, pp. 1–74. https://doi.org/10.1016/S0360-1285(00)00004-6.
  4. Luzan, S. O. & Sytnykov, P. A. (2022). Retrospektyvnyi analiz formuvannia ta rozvytku samoposhyriuvanoho vysokotemperaturnoho syntezu [Retrospective analysis of the formation and development of self-propagating high-temperature synthesis]. Visnyk Kremenchutskoho natsionalnoho universytetu imeni Mykhaila OstrohradskohoTransactions of Kremenchuk Mykhailo Ostrohradskyi National University, iss. 4 (135), pp. 88–96 (in Ukrainian). https://doi.org/10.32782/1995-0519.2022.4.12.
  5. Lutsak, D. L., Kryl, Ya. A., & Pylypchenko, O. V. (2015). Zastosuvannia samoposhyriuvanoho vysokotemperaturnoho syntezu v tekhnolohiiakh nanesennia znosostiikykh pokryttiv [The use of self-propagating high-temperature synthesis in the technologies of applying wear-resistant coatings]. Rozvidka ta rozrobka naftovykh i hazovykh rodovyshchProspecting and Development of Oil and Gas Fields, iss. 2 (55), pp. 43–50 (in Ukrainian).
  6. Luzan, S. O. & Sytnykov, P. A. (2022). Samoposhyriuvanyi vysokotemperaturnyi syntez: stan, problemy ta perspektyvy rozvytku [Self-propagating high-temperature synthesis: status, problems and development prospects]. Vcheni zapysky TNU imeni V. I. Vernadskoho. Seriia: Tekhnichni naukyScientific Notes of Taurida National V. I. Vernadsky University. Series: Technical Sciences, vol. 33 (72), no. 6, pp. 17–23 (in Ukrainian). https://doi.org/10.32782/2663-5941/2022.6/04.
  7. Rud, V. D. & Samchuk, L. M. (2012). Vplyv tekhnolohii syntezu na strukturu ta vlastyvosti spechenoho kompozytu systemy Ti-Fe-C [The influence of synthesis technology on the structure and properties of the sintered composite of the Ti-Fe-C system]. Visnyk NTU «KPI». Seriia: MashynobuduvanniaJournal of Mechanical Engineering NTUU “Kyiv Polytechnic Institute”, no. 64, pp. 239–243 (in Ukrainian).
  8. Rud, V. D., Halchuk, T. N., & Povstianoi, O. Iu. (2004). Sposib otrymannia metalevoho poroshku z shlamovykh vidkhodiv pidshypnykovoho vyrobnytstva [The method of obtaining metal powder from sludge waste of bearing production]. Patent of Ukraine no. 63558 A MPK 7 B22F9/04. Date of Patent 15 January 2004 (in Ukrainian).
  9. Chelpanov, D. I., Smalko, A. O., & Kuskova, N. I. (2017). Sposib oderzhannia vuhletsevykh nanomaterialiv [Method for producing carbon nanomaterials]. Patent of Ukraine no. 115582. Date of Patent 17 November 2017 (in Ukrainian).
  10. Batkal, A. N., Temirlanov, G. K., Satybaldiyev, E. M., Seydualieva, A., & Abdulkarimova, R. (2018). Self-propagating high-temperature synthesis of refractory powder materials based on zirconium diboride obtained from boron-containing mineral raw materials of the Republic of Kazakhstan. Chemical Bulletin of Kazakh National University, vol. 90, no. 3, pp. 4–11. https://doi.org/https://doi.org/10.15328/cb982.
  11. Koldasbekova, M. M., Seydualyeva, A. J., & Abdulkarimova, R. G. (2015). Self-propagating high temperature synthesis of chromium boride. News of the Academy of Sciences of the Republic of Kazakhstan. Series Chemistry and Technology, vol. 3, no. 411, pp. 102–108.
  12. Borysov, Yu. S., Borysova, A. L., Burlachenko, O. M., Tsymbalista, T. V., Vasylkivska, M. A., & Byba, E. G. (2021). Composite powders based on FeMoNiCrB amorphizing alloy with additives of refractory compounds for thermal spraying of coatings. The Paton Welding Journal, iss. 11, pp. 38–47. https://doi.org/10.37434/tpwj2021.11.07.
  13. Borysov, Yu. S., Borysova, A. L., Tsymbalista, T. V., Kildiy, A. I., Yantsevych, K. V., & Ipatova, Z. G. (2021). Producing and properties of detonation coatings based on FeMoNiCrB amorphizing alloy with addition of strengthening phases. The Paton Welding Journal, iss. 12, pp. 29–35. https://doi.org/10.37434/tpwj2021.12.05.
  14. Mrdak, M. R. (2012). Microstructure and mechanical properties of nickel-chrome-bor-silicon layers produced by the atmospheric plasma spray process. Vojnotehnicki glasnik Military Technical Courier, vol. LX, iss. 1, pp. 183–200. https://doi.org/10.5937/vojtehg1201183M.
  15. Röttger, A., Kuepferle, J., Brust, S., Mohr, A., & Theisen, W. (2015). Abrasion in tunneling and mining. International Conference on Stone and Concrete Machining (ICSCM), vol. 3, pp. 246–261. https://doi.org/10.13154/icscm.3.2015.246-261.
  16. Bergant, Z., Batic, B., Felde, I., Sturm, R., & Sedlacek, M. (2022). Tribological properties of solid solution strengthened laser cladded NiCrBSi/WC-12Co metal matrix composite coatings. Materials, vol. 15, iss. 1, paper 342. https://doi.org/10.3390/ma15010342.
  17. Luzan, S. O. & Sytnykov, P. A. (2023). Doslidzhennia vplyvu parametriv mekhanichnoi aktyvatsii shykhty Ti–C–Al–SiO2–Al2O3–Fe2O3–PT-NA-01 na tryvalist syntezu kompozytsiinoho materialu, shcho modyfikuie [Study of the influence of the parameters of mechanical activation of the charge Ti–C–Al–SiO2–Al2O3–Fe2O3–PT-NA-01 on the duration of the synthesis of the modifying composite material]. Visnyk KhNADUBulletin of Kharkiv National Automobile and Highway University, iss. 100, pp. 42–47 (in Ukrainian). https://doi.org/10.30977/BUL.2219-5548.2023.100.0.42.
  18. Luzan, S. O. & Sytnykov, P. A. (2023). Doslidzhennia osoblyvostei initsiiuvannia protsesu samoposhyriuvanoho vysokotemperaturnoho syntezu modyfikuiuchoho kompozytsiinoho material [Study of the peculiarities of initiating the process of self-propagating high-temperature synthesis of a modifying composite material]. Visnyk Kremenchutskoho natsionalnoho universytetu imeni Mykhaila OstrohradskohoTransactions of Kremenchuk Mykhailo Ostrohradskyi National University, iss. 2 (139), pp. 102–109 (in Ukrainian). https://doi.org/10.32782/1995-0519.2023.2.13.
  19. Borisov, Yu. S., Voinarovych, S. G., Kyslytsia, A. N., Kuzmych-Yanchuk, E. K., & Kaliuzhnyi, S. N. (2019). Investigation of electrical and thermal characteristics of plasmatron for microplasma spraying of coatings from powder materials. The Paton Welding Journal, iss. 11, pp. 19–22. https://doi.org/10.15407/tpwj2019.11.04.
  20. Borisov, Yu. S., Kyslytsia, O. M., Voinarovych, S. G., Kuzmych-Ianchuk, Ie. K., & Kaliuzhnyi, S. M. (2018). Investigation of plasmatron electric and energy characteristics in microplasma spraying with wire materials. The Paton Welding Journal, iss. 9, pp. 18–22. https://doi.org/10.15407/tpwj2018.09.04.
  21. Borysov, Yu. S., Voinarovych, S. H., Fomakin, A. A., & Yushchenko, K. A. (2003). Plazmotron dlia napylennia pokryttiv [Plasmotron for spraying coatings]: Patent of Ukraine no. 1848, Int. Cl. B23K10/00. Date of Patent 16 June 2003 (in Ukrainian).
  22. Luzan, S. O. & Sytnykov, P. A. (2023). Struktura ta vlastyvosti plazmovykh pokryttiv, napylenykh kompozytsiinym materialom, oderzhanym z vykorystanniam SVS-protsesu [Structure and properties of plasma coatings sprayed with composite material obtained using the SVS process]. Visnyk Khersonskoho natsionalnoho tekhnichnoho universytetuVisnyk of Kherson National Technical University, no. 2 (85), pp. 49–57 (in Ukrainian). https://doi.org/10.35546/kntu2078-4481.2023.2.6.

 

Received 22 August 2023

Published 30 September 2023