Optimal thermal power of the absorption heat pump with steam heating, which is integrated into the steam turbine PT-60/70-130/13

DOI
Journal Journal of Mechanical Engineering – Problemy Mashynobuduvannia
Publisher Anatolii Pidhornyi Institute of Power Machines and Systems
of National Academy of Science of Ukraine
ISSN  2709-2984 (Print), 2709-2992 (Online)
Issue Vol. 27, no. 4, 2024 (December)
Pages 60-73
Cited by J. of Mech. Eng., 2024, vol. 27, no. 4, pp. 60-73

 

Authors

Oleksandr L. Shubenko, Anatolii Pidhornyi Institute of Power Machines and Systems of NAS of Ukraine (2/10, Komunalnykiv str., Kharkiv, 61046, Ukraine), e-mail: shuben@ipmach.kharkov.ua, ORCID: 0000-0001-9014-1357

Viktoriia O. Tarasova, Anatolii Pidhornyi Institute of Power Machines and Systems of NAS of Ukraine (2/10, Komunalnykiv str., Kharkiv, 61046, Ukraine), e-mail: vat523710@gmail.com, ORCID: 0000-0003-3252-7619

Mykola Yu. Babak, Anatolii Pidhornyi Institute of Power Machines and Systems of NAS of Ukraine (2/10, Komunalnykiv str., Kharkiv, 61046, Ukraine), e-mail: Bab67Nik@gmail.com, ORCID: 0000-0002-4281-2790

Oleksii Yu. Boiarshynov, Anatolii Pidhornyi Institute of Power Machines and Systems of NAS of Ukraine (2/10, Komunalnykiv str., Kharkiv, 61046, Ukraine), e-mail: aleksey.boiarshynov@gmail.com, ORCID: 0000-0003-3412-3212

 

Abstract

The task of calculating the optimal thermal intensity of an absorption lithium bromide heat pump (ALBHP) with steam heating, integrated into the thermal circuit of a steam turbine, has been formulated and solved. PT-60/70-130/13 when operating in a mode with minor changes in the rotary control diaphragm. The turbine unit supplied steam to the boilers and ensured heat supply on a schedule of 150 / 70 ºС. The characteristics of ALBHP were modeled using the approximate deposits based on the characteristics of thermotransformers. The ALBHP was heated by steam from a vibrating turbine after a steam propeller machine installed for energy saving. A complete optimization task with the function of changing the monthly burning costs after the integration of ALBHP, based on the average monthly temperature of the current air in the burning season in Ukraine, was divided into 6 additional optimization tasks. The control parameters for these tasks were: thermal pressure of the ALBHP, steam pressure at the turbine condenser and at the inlet of the heat pump, steam loss into the turbine head. This problem was solved using the coordinate descent method. The following modes were monitored with steam rates at the same time as turbine selection for employees: 15, 30 and 45 t/h (with parameters: 1.296 MPa, 280 ºС) and network water: 1600, 1650 and 1700 m3/h. Their peculiarity is the provision of “bark” generation in the volumes that robots demonstrate PT-60/70-130/13 without ALBHP with a closed rotary diaphragm. For all considered options for turbine installation, the optimal intensity of the integrated ALBHP is set at 20 MW. During the burning period, PT-60/70-130/13 with ALBHP 20 MW when operating in a mode close to thermal heating with less waste of generator steam and network water, allows you to save: burning ~3.5%, blended water 8.5%, technical water 79.9%, and also gives a significant environmental effect due to the reduction of liquid waste to the atmosphere. The leading line of ALBHP capacity is close to 3 rocks. It appears that the option of a robotic integrated turbine with a partially open regulating diaphragm, for obvious prices for fuel and electricity, produces according to economic indicators the option with a closed diaphragm.

 

Keywords: energy saving, absorption heat pump, thermal circuit of a steam turbine.

 

Full text: Download in PDF

 

References

  1. Romanyuk, V. N., Bobich, A.A. Muslina, D. B., Bubyr, T. V., & Malkov, S. V. (2013). Absorbtsionnyye teplovyye nasosy v teploenergeticheskikh sistemakh promyshlennykh predpriyatiy dlya snizheniya energeticheskikh i finansovykh zatrat [Absorption heat pumps in heat and power systems of industrial enterprises to reduce energy and financial costs]. Energiya i menedzhment – Energy and Management, no. 1 (70), pp. 14–19 (in Russian).
  2. Romanyuk, V. N. & Bobich, A. A. (2016). Obosnovaniye parametrov ABTN dlya utilizatsii VER na TETs s pomoshchyu passivnogo eksperimenta i opredeleniye sootvetstvuyushchikh izmeneniy razlichnykh otsenok raboty energosistemy [Justification of the parameters of the ABTN for the utilization of VER at TPPs using a passive experiment and determination of the corresponding changes in various estimates of the operation of the energy system]. Energiya i menedzhment – Energy and Management, no. 1 (88), pp. 14–23 (in Russian).
  3. Romanyuk, V. N., Sednin, V. A., Bobich, A. A., Bubyr, T. I., & Boyko, Ye. G. (2017). Vremya primeneniya absorbtsionnykh bromisto-litiyevykh teplovykh nasosov na promyshlennykh predpriyatiyakh Belarusi [Time of application of absorption lithium bromide heat pumps at industrial enterprises of Belarus]. EnergoeffektivnostEnergy efficiency, no. 4, pp. 12–14 (in Russian).
  4. Blazek, H. & Barnick, M. (2021). LiBr absorption heat pumps: Optimizing district heating systems and waste heat usage. Interreg Central Europe Entrain: presentation of conference (November 23, 2021, Vein, Austria). [Electronic resource], 19 p. URL: https://programme2014-20.interreg-central.eu/Content.Node/ENTRAIN/ENTRAIN-TT5-Absorption-heat-pumps-and-waste-heat.pdf.
  5. (2024). Lithium bromide absorption heat pump. Shuangliang Eco-Energy Systems Co., Ltd.: official site, 3 р. http://sl-ecoenergy.com/1-5-lithium-bromide-absorption-heat-pump/163320/.
  6. (2016). Absorption heat pump/water chilling unit energy-saving reconstruction project of Cangzhou Huarun Thermal Power Plant (Tongfang Artificial Environment Co., Ltd). Tsinghua Holdings Co., Ltd.: official site, 1 р. http://en.thholding.com.cn/2016-08/03/c_54899.htm.
  7. (2018). Opyt ispolzovaniya bromisto-litiyevykh teplovykh nasosov v Yuzhnoy Koreye i Kitayskoy Narodnoy Resublike [Experience of using lithium bromide heat pumps in South Korea and the People’s Republic of China]. JSC Company “Service of Heat and Cooling Equipment”: official site, 3 p. (in Russian). https://broad-ctx.by/stati/opyt-ispolzovaniya-abtn-v-koree-i-kitae.
  8. Cers, A., Turlajs, D., & Zeltinsh, N. (2013). Recovery of the waste heat by large capacity heat pumps for Riga city district heating system. Modern Science: Researches, ideas, results, technologies, vol. 4, no. 2, pp. 38–43.
  9. Rudchenko, A. V., Kochemazov, I. V., & Dukh, A. P. (2018). Otsenivayem ekonomicheskiy effekt samogo moshchnogo teplovogo nasosa Belarusi [We evaluate the economic effect of the most powerful heat pump in Belarus. Energy efficiency]. EnergoeffektivnostEnergy efficiency, no. 4, pp. 25 (in Russian).
  10. Geyer, R., Hangartner, D., Lindahl, M., Pedersen, S. V., & Betz, M. (2019). IEA heat pumping technologies. Annex 47. Heat pumps in district heating and cooling systems. Task 2: Demonstration projects. International Energy Agency, Paris: official site, 6 p. https://heatpumpingtechnologies.org/annex47/wp-content/uploads/sites/54/2019/07/task-2-summary-report.pdf.
  11. Chirkin, N. B., Kuznetsov, M. A., Sherstov, Ye. V., Stennikov, V. N. (2014). Potentsial’naya vozmozhnost i tekhnicheskaya ratsionalnost primeneniya teplonasosnykh tekhnologiy pri kombinirovannom proizvodstve elektriche-skoy i teplovoy energii [Potential possibility and technical rationality of using heat pump technologies in combined production of electric and thermal energy]. Problemy mashinostroyeniyaJournal of Mechanical Engineering – Problemy Mashynobuduvannia, vol. 17, no. 1, pp. 11–20 (in Russian).
  12. Xu, Z. Y., Mao, H. C., Liu, D. S., & Wang, R. Z. (2018). Waste heat recovery of power plant with large scale serial absorption heat pumps. Energy, vol. 165, part B, pp. 1097–1105. https://doi.org/10.1016/j.energy.2018.10.052.
  13. Zhang, L., Zhang, Y., Zhou, L., Zhijun, E., Wang, K., Wang, Z., Li, G., & Qu, B. (2018). Research of waste heat energy efficiency for absorption heat pump recycling thermal power plant circulating water. IOP Conference Series: Earth and Environmental Science, vol. 121, iss. 4, article 042005. https://doi.org/10.1088/1755-1315/121/4/042005.
  14. Zhang, H., Zhao, H., Li, Z., & Hu, E. (2019). Optimization potentials for the waste heat recovery of a gas-steam combined cycle power plant based on absorption heat pump. Journal of Thermal Science, vol. 28, pp. 283–293. https://doi.org/10.1007/s11630-018-1055-7.
  15. Ma, C., Ren, J., Li, F., Hou, X., Feng, H., & Zhang, X. (2019). Energy saving analysis of circulating water waste heat recovery from water source heat pump. IOP Conference Series: Earth and Environmental Science, vol. 295, article 052016. https://doi.org/10.1088/1755-1315/295/5/052016.
  16. Wang, J., Liu, W., Liu, G., Sun, W., Li, G., & Qiu, B. (2020). Theoretical design and analysis of the waste heat recovery system of turbine exhaust steam using an absorption heat pump for heating supply. Energies, vol. 13, iss. 23, article 6256. https://doi.org/10.3390/en13236256.
  17. Xu, Z. Y., Gao, J. T., Mao, H. C., Liu, D. S., & Wang, R. Z. (2020). Double-section absorption heat pump for the deep recovery of low-grade waste heat. Energy Conversion and Management, vol. 220, article 113072. https://doi.org/10.1016/j.enconman.2020.113072.
  18. Wang, Z., Shen, H., Gu, Q., Wen, D., Liu, G., Gao, W., & Ren, J. (2021). Economic analysis of heat pump recovery system for circulating water waste heat in power plant. E3S Web of Conferences, vol. 256, article 02011. 4 p. https://doi.org/10.1051/e3sconf/202125602011.
  19. Redko, A. O., Redko, I. O., Pavlovskyi, S. V., Burda, Yu. O., Pivnenko, Yu. O, & Alforov, S. O. (2020). Zastosuvannia absorbtsiinoho teplovoho nasosa v umovakh naiavnoi teploelektrotsentrali [Application of an absorption heat pump in the conditions of an existing thermal power plant]. Ventyliatsiia, osvitlennia ta te-plohazopostachanniaVentilation, Illumination and Heat-Gas Supply, vol. 34, pp. 57–62 (in Ukrainian). https://doi.org/10.32347/2409-2606.2020.34.57-62.
  20. Shubenko, O. L., Usatyi, O. P., Babak, M. Yu., Forkun, Ya. B., & Senetskyi, O. V. (2023). Vyznachennia optymalnoi potu-zhnosti absorbtsiinoho teplovoho nasosu pry intehratsii do teplovoi skhemy PT-60/70-130/13 [Determination of the optimal power of an absorption heat pump when integrated into the PT-60/70-130/13 thermal scheme]. Visnyk NTU «KhPI». Seriia: Hidravlichni mashyny ta hidroahrehatyBulletin of the National Technical University “KhPI”. Series: Hydraulic machines and hydraulic units, no. 2, pp. 4–15 (in Ukrainian). https://doi.org/10.20998/2411-3441.2023.2.01.
  21. Shubenko, O. L., Babak, M. Yu., & Senetskyi, O. V. (2024). Approximation mathematical model of an absorption heat pump with steam heating for integration in the steam turbine thermal scheme. Science and Innovation, vol. 20, no. 1, pp. 35–48. https://doi.org/10.15407/scine20.01.035.
  22. Shubenko, O., Babak, M., Senetskyi, O., & Forkun, Ya. (2023). Energy saving during the interheating period with the integration of a steam heated absorption heat pump to the thermal scheme of the steam turbine PT-60/70-130/13. Energetika, vol. 69, no. 1, pp. 36–48. https://doi.org/10.6001/energetika.2023.69.1.3.
  23. (1975). Tipovaya normativnaya kharakteristika turboagregata PT-60-1 30-13 LMZ RD 34.30.711 [Typical standard characteristics of the turbo unit PT-60-1 30-13 LMZ RD 34.30.711]. Moscow: Specialized center of scientific and technical information ORGRES, 36 p. (in Russian).
  24. Arseniev, V. M. & Meleichuk, S. S. (2018). Teplovi nasosy: osnovy teorii i rozrakhunku [Heat pumps: fundamentals of theory and calculation]: A textbook. Sumy: Sumy State University, 364 p. (in Ukrainian).
  25. (2016). Broad absorption heat pump: electronic catalog. BROAD Air Conditioning, 12 р. http://en.broad.com/Storage/Largedownloads/enydfdrb.pdf.
  26. (2018). Absorbtsionnyye bromisto-litiyevyye teplovyye nasosy Teplosibmash [Absorption lithium bromide heat pumps Teplosibmash] [Electronic resource]. LLC Special Design Bureau “Teplosibmash”: official site. (in Russian). http://www.teplosibmash.ru/catalog.
  27. Maliarenko, V. A., Shubenko, O. L., Andrieiev, S. Yu., Babak, M. Yu., & Senetskyi, O. V. (2018). Koheneratsiini tekhnolohii v malii enerhetytsi [Cogeneration technologies in small power engineering]. Kharkiv: O. M. Beketov National University of Urban Economy in Kharkiv, 433 p. (in Ukrainian).
  28. (2016). Teplovyye nasosy v sovremennoy promyshlennosti i kommunalnoy infrastrukture [Heat pumps in modern industry and municipal infrastructure]: Information and methodological publication. M.: Pero Publ., 204 p. (in Russian).

 

Received 01 September 2024

Published 30 December 2024