Analysis of Modern Numerical Approaches to Film Cooling Simulation on a Flat Surface: Trends, Errors and Correlation Dependencies
| DOI | |
| Journal | Journal of Mechanical Engineering – Problemy Mashynobuduvannia |
| Publisher | Anatolii Pidhornyi Institute of Power Machines and Systems of National Academy of Science of Ukraine |
| ISSN | 2709-2984 (Print), 2709-2992 (Online) |
| Issue | Vol. 28, no. 4, 2025 (December) |
| Pages | 11-25 |
| Cited by | J. of Mech. Eng., 2025, vol. 28, no. 4, pp. 11-25 |
Author
Oleh V. Shevchuk, National Technical University “Kharkiv Polytechnic Institute” (2, Kyrpychova str., Kharkiv, 61002, Ukraine), JSC “Ivchenko-Progress” (2, Ivanova str., Zaporizhzhia, 69068, Ukraine), e-mail: Oleh.Shevchuk@ieee.khpi.edu.ua, ORCID: 0000-0003-1837-6287
Abstract
An analysis of modern numerical methods for film cooling simulation on a flat surface, considering current CFD (Computational Fluid Dynamics) trends during 2019–2025, is presented in the paper. More than 25 recent studies devoted to 3D CFD simulations of film cooling effectiveness for various hole geometries – cylindrical, shaped, unsteady, and combined ones – are reviewed. The comparison of turbulence models, grid parameters, and validation methods against experimental data is provided. It is shown that even a small deviation in cooling effectiveness (± 0.02) can lead to temperature prediction errors exceeding 20 °C under real engine conditions. The study demonstrates that reverse-injection film cooling holes significantly increase effectiveness at high blowing ratios m, while forward-injection configurations perform better at low m. For shaped holes, the influence of the compound blowing angle β is found to be non-negligible and should be considered in engineering calculations. The importance of accounting for the ratio of specific heat capacities between coolant and mainstream gas during the scaling of laboratory data to engine conditions is emphasized. A comparative analysis of existing 1D correlations shows that the Baldauf formulas generally overpredict the effectiveness of cylindrical holes, while the Colban correlations underestimate that of shaped holes. This highlights the need for updated generalized dependencies that integrate modern CFD results and thermophysical parameters. Scientific novelty lies in the systematic review of modern CFD studies on film cooling, the identification of the influence of hole direction and blowing ratio m on cooling effectiveness, and the proposed inclusion of specific heat effects in scaling procedures.
Keywords: film cooling, CFD modeling, blowing ratio, cooling effectiveness, gas turbine engine, gas turbine, combustion chamber.
Full text: Download in PDF
References
- Petelchits, V. Yu., Khalatov, A. A., Pismennyy, D. N., & Dashevskiy, Yu. Ya. (2013). Adaptatsiya SST modeli turbulentnosti dlya modelirovaniya plenochnogo okhlazhdeniya ploskoy plastiny [Adaptation of SST turbulence model for a flat plate film cooling simulation]. Vostochno-Yevropeyskiy zhurnal peredovykh tekhnologiy – Eastern-European Journal of Enterprise Technologies, vol. 3, no. 12 (63), pp. 25–29 (in Russian). https://doi.org/10.15587/1729-4061.2013.14874.
- Da Soghe, R., Bianchini, C., & D’Errico, J. (2018). Numerical characterization of flow and heat transfer in preswirl systems. Journal of Engineering for Gas Turbines and Power, vol. 140, iss. 7, article 071901, 12 p. https://doi.org/10.1115/1.4038618.
- Bogard, D. G. & Thole, K. A. (2006). Gas turbine film cooling. Journal of Propulsion and Power, vol. 22, no. 2, pp. 249–270. https://doi.org/10.2514/1.18034.
- Shevchuk, O. & Tarasov, O. (2024). Optymizatsiia systemy okholodzhennia robochoi lopatky TVT za dopomohoiu 1D-2D pidkhodiv [Optimization of the cooling system of the working blade of the TVT using 1D-2D approaches]. Enerhetychni ta teplotekhnichni protsesy y ustatkuvannia [Energy and heat engineering processes and equipment]: abstracts of the reports of the XX International Scientific and Technical Conference (December 26–27, 2024). Kharkiv: NTU “KhPI”, pp. 23–24 (in Ukrainian).
- Naidu, A. D. & Povey, T. (2023). Impact of temperature ratio on overall cooling performance: Low-order-model-based analysis of experiment design. Journal of Turbomachinery, vol. 149, iss. 5, article 91006, 18 p. https://doi.org/10.1115/1.4062279.
- Wiese, C. J., Rutledge, J. L., & Polanka, M. D. (2017). Experimental evaluation of thermal and mass transfer techniques to measure adiabatic effectiveness with various coolant to freestream property ratios. Journal of Turbomachinery, vol. 140, iss. 2, article 021001, 9 p. https://doi.org/10.1115/1.4038177.
- Di Lella, J. P., Wiese, C. J., & Rutledge, J. L. (2025). The relative effects of internal reynolds number and advective capacity ratio on the coolant warming factor. ASME turbo expo 2025: Turbomachinery technical conference and exposition: Proceedings paper (June 16–20, 2025, Memphis, Tennessee, USA), vol. 5, paper no. GT2025-152999, V005T12A016, 10 p. https://doi.org/10.1115/gt2025-152999.
- Rutledge, J. L. & Polanka, M. D. (2014). Computational fluid dynamics evaluations of unconventional film cooling scaling parameters on a simulated turbine blade leading edge. Journal of Turbomachinery, vol. 136, iss. 10, paper 101006, 9 p. https://doi.org/10.1115/1.4028001.
- Zhang, R., Zhou, L., Xing, J., Luo, C., & Du, X. (2021). Numerical evaluation of film cooling performance of transverse trenched holes with shaped lips. International Communications in Heat and Mass Transfer, vol. 125, article 105326. https://doi.org/10.1016/j.icheatmasstransfer.2021.105326.
- Bakhshinejad Bahambari, A., Kayhani, M. H., & Norouzi, M. (2021). On the effect of geometry of w-wave trenches on film cooling performance of gas turbine blades. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol. 235, iss. 7, pp. 1595–1618. https://doi.org/10.1177/09576509211008277.
- Fischer, L., James, D., Jeyaseelan, S., & Pfitzner, M. (2023). Optimizing the trench shaped film cooling design. International Journal of Heat and Mass Transfer, vol. 214, article 124399. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124399.
- Khalatov, A., Shi-Ju, E., Wang, D., & Borisov, I. (2020). Film cooling evaluation of a single array of triangular craters. International Journal of Heat and Mass Transfer, vol. 159, article 120055. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120055.
- Donyk, T., Stupak, O., Potapov, S., & Lankov, B. (2023). Plivkove okholodzhennia na plaskii poverkhni za odnym riadom trykutnykh zahlyblen z vyimkoiu pry zovnishnii turbulentnosti [Film Cooling on a Flat Surface Behind One Row of Triangular Dimples with a Notch Under External Turbulence]. Visnyk NTU «KhPI»: Seriia «Enerhetychni ta teplotekhnichni protsesy y ustatkuvannia» – Bulletin of the National Technical University “KhPI”. Series: Power and Heat Engineering Processes and Equipment, no. 3, pp. 34–40 (in Ukrainian). https://doi.org/10.20998/2078-774x.2023.03.05.
- Zheng, D., Wang, X., Zhang, F., & Yuan, Q. (2019). Numerical investigation on the dual effect of upstream steps and transverse trenches on film cooling performance. Journal of Aerospace Engineering, vol. 32, iss. 4, article 04019028. https://doi.org/10.1061/(asce)as.1943-5525.0001007.
- Hussain, S. & Yan, X. (2020). Implementation of hole-pair in ramp to improve film cooling effectiveness on a plain surface. ASME turbo expo 2020: Turbomachinery technical conference and exposition: Proceedings paper (September 21–25, 2020), vol. 7B, paper no. GT2020-14838, V07BT12A035, 12 p. https://doi.org/10.1115/gt2020-14838.
- Lee, C.- Sh., Bryden, K. M., & Shih, T. I.-P. (2020). Downstream vortex generators to enhance film-cooling effectiveness. ASME turbo expo 2020: Turbomachinery technical conference and exposition: Proceedings paper (September 21–25, 2020), vol. 7B, paper no. GT2020-14317, V07BT12A009, 10 p. https://doi.org/10.1115/gt2020-14317.
- Danylov, M. & Donyk, T. (2023). Vplyv blokuvannia otvoriv vyduvu okholodzhuvacha na efektyvnist plivkovoho okholodzhennia [The effect of blocking the cooling air vents on the efficiency of film cooling]. Visnyk NTU «KhPI»: Seriia «Enerhetychni ta teplotekhnichni protsesy y ustatkuvannia» – Bulletin of the National Technical University “KhPI”. Series: Power and Heat Engineering Processes and Equipment, no. 4, pp. 45–50 (in Ukrainian). https://doi.org/10.20998/2078-774x.2023.04.06.
- Li, B., Liu, C., Ye, L., Zhu, H., & Zhang, F. (2020). Experimental and numerical study on the effects of the relative position of film hole and orientation ribs on the film cooling with ribbed cross-flow coolant channel. ASME turbo expo 2020: Turbomachinery technical conference and exposition: Proceedings paper (September 21–25, 2020), vol. 7B, paper no. GT2020-14389, V07BT12A011, 14 p. https://doi.org/10.1115/gt2020-14389.
- Zhu, H., Xie, G., Zhu, R., & Sunden, B. (2022). Effects of internal coolant crossflow on film-cooling performance of double-jet and cylindrical holes. ASME turbo expo 2022: Turbomachinery technical conference and exposition: Proceedings paper (June 13–17, 2022, Rotterdam, Netherlands), vol. 6A, paper no. GT2022-82514, V06AT12A028, 11 p. https://doi.org/10.1115/gt2022-82514.
- Liu, R., Li, H., You, R., & Tao, Z. (2022). Multi-parameters sensitivity analysis of overall cooling effectiveness on turbine blade and numerical investigation of internal cooling structures on heat transfer. ASME turbo expo 2022: Turbomachinery technical conference and exposition: Proceedings paper (June 13–17, 2022, Rotterdam, Netherlands), vol. 6A, paper no. GT2022-82372, V06AT12A026, 10 p. https://doi.org/10.1115/gt2022-82372.
- Khalatov, A. A., Borysov, I. I., & Kulishov, S. B. (2022). Rozvytok system plivkovoho okholodzhennia lopatok hazovykh turbin [Development of turbine blade film cooling systems (the review)]. Teplofizyka ta teploenerhetyka – Thermophysics and Thermal Power Engineering, vol. 44, no. 2, pp. 70–83 (in Ukrainian). https://doi.org/10.31472/ttpe.2.2022.9.
- Zamiri, A., You, S. J., & Chung, J. T. (2020). Numerical evaluation of surface roughness effects on film-cooling performance in a laidback fan-shaped hole. ASME turbo expo 2020: Turbomachinery technical conference and exposition: Turbomachinery technical conference and exposition: Proceedings paper (September 21–25, 2020), vol. 7B, paper no. GT2020-14525, V07BT12A019, 9 p. https://doi.org/10.1115/gt2020-14525.
- Yang, F. & Taslim, M. E. (2022). Experimental and numerical studies of the film cooling effectiveness downstream of a curved diffusion film cooling hole. International Journal of Rotating Machinery, vol. 2022, iss. 1, pp. 1–14. https://doi.org/10.1155/2022/9913692.
- Barigozzi, G., Zamiri, A., Brumana, G., Franchina, N., & Taek Chung, J. (2025). On the impact of Reynolds number on the performance of a trenched shaped hole. Proceedings of the 16th European Conference on Turbomachinery Fluid dynamics & Thermodynamics (ETC16) (March 24–28, 2025, Hannover, Germany), paper ID ETC2025-107, 10 p. https://doi.org/10.29008/ETC2025-107.
- Barigozzi, G., Zamiri, A., Brumana, G., Carnevale, M., & Chung, J. T. (2025). On the impact of upstream bump geometry on the aerothermal performance of a 7-7-7 shaped hole. ASME turbo expo 2025: Turbomachinery technical conference and exposition: Proceedings paper (June 16–20, 2025, Memphis, Tennessee, USA), vol. 5, paper no. GT2025-152365, V005T12A008, 14 p. https://doi.org/10.1115/gt2025-152365.
- Avcun, S., Erdem, E., Sal, S., & Yasa, T. (2025). The effect of crossflow velocity on the film cooling effectiveness of fan shaped holes. ASME turbo expo 2025: Turbomachinery technical conference and exposition: Proceedings paper (June 16–20, 2025, Memphis, Tennessee, USA), vol. 5, paper no. GT2025-154073, V005T12A029, 12 p. https://doi.org/10.1115/gt2025-154073.
- Li, Y., Xu, H., Wang, J., Song, W., Wang, M., Liu, T., & Wang, X. (2020). Application of scale adaptive simulation model to studying cooling characteristics of a high pressure turbine blade cutback trailing edge with different cooling configurations. ASME turbo expo 2020: Turbomachinery technical conference and exposition: Proceedings paper (September 21–25, 2020), vol. 7B, paper no. GT2020-14234, V07BT12A006, 13 p. https://doi.org/10.1115/gt2020-14234.
- Furgeson, M. T., Flachs, E. M., & Bogard, D. G. (2025). Adjoint optimization of gas turbine film cooling geometry with elevated mainstream Mach number. ASME turbo expo 2025: Turbomachinery technical conference and exposition: Proceedings paper (June 16–20, 2025, Memphis, Tennessee, USA), vol. 5, paper no. GT2025-154287, V005T12A034, 14 p. https://doi.org/10.1115/gt2025-154287.
- Sharma, H., Mistry, C. S., & Roy, A. (2024). Sweeping jet film cooling over the suction surface of HP turbine NGV with forward and reversed hole configurations. ASME turbo expo 2024: Turbomachinery technical conference and exposition: Proceedings paper (June 24–28, 2024, London, United Kingdom), vol. 7, paper no. GT2024-129582, V007T12A047, 14 p. https://doi.org/10.1115/gt2024-129582.
- Sharma, H., Kumar, K. S. P., Roy, A., & Mistry, C.S. (2025). Effect of blowing configurations on heat transfer augmentation with multihole sweeping jet film cooling. ASME turbo expo 2025: Turbomachinery technical conference and exposition: Proceedings paper (June 16–20, 2025, Memphis, Tennessee, USA), vol. 5, paper no. GT2025-153525, V005T12A026, 13 p. https://doi.org/10.1115/gt2025-153525.
- Zhao, Z., He, L. M., Dai, S., & Shao, S. (2019). Computational research on film cooling performance of different shaped holes with backward and forward injection. AIP Advances, vol. 9, iss. 5, article 055009. https://doi.org/10.1063/1.5091573.
- Wang, J., Liu, C., Zhao, Z., Baleta, J., & Sundén, B. (2020). Effect and optimization of backward hole parameters on film cooling performance by Taguchi method. Energy Conversion and Management, vol. 214, article 112809. https://doi.org/10.1016/j.enconman.2020.112809.
- Tamang, S., Kwon, H., Choi, J., Ligrani, P., Lee, H., Jung, G., & Park, H. (2020). Numerical investigation of adiabatic film cooling effectiveness through compound angle variations. Numerical Heat Transfer, Part A: Applications, vol. 78, iss. 10, pp. 595–618. https://doi.org/10.1080/10407782.2020.1803600.
- Baldauf, S., Scheurlen, M., Schulz, A., & Wittig, S. (2002). Correlation of film-cooling effectiveness from thermographic measurements at enginelike conditions. Journal of Turbomachinery, vol. 124, iss. 4, pp. 686–698. https://doi.org/10.1115/1.1504443.
- Watanabe, K., Matsuura, M., Suenaga, K., & Takeishi, K. I. (1999). An experimental study on the film cooling effectiveness with expanded hole geometry. Proceedings of the international gas turbine congress, 1999 Kobe TS-48, pp. 615–622.
- Sandri, U., Polanka, M. D., Picchi, A., Andreini, A., & Facchini, B. (2025). Adiabatic effectiveness measurements of film cooling in supersonic flow. ASME turbo expo 2025: Turbomachinery technical conference and exposition: Proceedings paper (June 16–20, 2025, Memphis, Tennessee, USA), vol. 5, paper no. GT2025-152900, V005T12A013, 15 p. https://doi.org/10.1115/gt2025-152900.
- Müller, M. & Morsbach, C. (2023). Assessment of source term and turbulence model combinations for film cooling in turbines. Proceedings of the 15th European Conference on Turbomachinery Fluid dynamics & Thermodynamics (April 24–28, 2023, Budapest, Hungary), paper ID ETC2023-281, 16 p. https://doi.org/10.29008/etc2023-281.
- Colban, W. F., Thole, K. A., & Bogard, D. (2010). A film-cooling correlation for shaped holes on a flat-plate surface. Journal of Turbomachinery, vol. 133, iss. 1, article 011002, 11 p. https://doi.org/10.1115/1.4002064.
- Bradley, A. & Wren, J. Comparison of correlations and experiments for prediction of vane film cooling in gas turbines: Report of Department of Management and Engineering Division of Applied Thermodynamics and Fluid Mechanics LIU-IEI-R–10/0102–SE. Sweden, Linkoping: Linkoping University, Institute of Technology, 9 p. https://www.diva-portal.org/smash/get/diva2:611589/FULLTEXT01.pdf.
Received 26 October 2025
Accepted 20 November 2025
Published 30 December 2025