Inverse Problem of Fracture Mechanics for a Perforated Stringer Plate

DOI
Journal Journal of Mechanical Engineering – Problemy Mashynobuduvannia
Publisher Anatolii Pidhornyi Institute of Power Machines and Systems
of National Academy of Science of Ukraine
ISSN  2709-2984 (Print), 2709-2992 (Online)
Issue Vol. 28, no. 4, 2025 (December)
Pages 44-55
Cited by J. of Mech. Eng., 2025, vol. 28, no. 4, pp. 44-55

 

Author

Minavar V. Mir-Salim-zada, Institute of Mathematics and Mechanics of the NAS of Azerbaijan (9, Vahabzade str., Baku, AZ1141, Azerbaijan), e-mail: minavar.mirsalimzade@imm.az, ORCID: 0000-0003-4237-0352

 

Abstract

To determine an optimal contour of holes for a perforated stringer plate weakened by a periodic system of cracks, an inverse problem of fracture mechanics is considered. It is assumed that the material of the plate is elastic or elastic-plastic. The stiffeners (stringers) are symmetrically riveted to the plate. The perforated plate is uniformly stretched at infinity along the stringers. It is assumed that rectilinear cracks are located near the contours of the holes and are perpendicular to the riveted stiffeners. The solution of the formulated inverse problem is based on the principle of equal strength. The optimal shape of the holes satisfies two conditions: the condition for the absence of stress concentration on the hole surface and the condition for the zero stress intensity factors in the vicinity of the crack tips. The unknown contour of holes is looked for in the class of contours close to circular. The action of the stiffeners is replaced by unknown equivalent concentrated forces at the points of their connection with the plate. The sought-for functions (the stresses, displacements, concentrated forces and stress intensity factors) are looked for in the form of expansion in small parameter. The solution to the problem is sought using the apparatus of the theory of analytic functions and the theory of singular integral equations, then the conditional extremum problem is solved. As a result, a closed system of algebraic equations is obtained, which allows to minimize the stress state on the contours of holes and stress intensity factors in the vicinity of the crack tips. The obtained system of algebraic equations allows to determine the form of equal strength contour of holes, the stress-strain state of the perforated stringer plate and also the optimal value of the tangential stress.

 

Keywords: perforated plate, stringers, cracks, optimal contour, equi-strong holes.

 

Full text: Download in PDF

 

References

  1. Cherepanov, G. P. (1974). Inverse problems of the plane theory of elasticity. Journal of Applied Mathematics and Mechanics, vol. 38, iss. 6, pp. 915–931. https://doi.org/10.1016/0021-8928(75)90085-4.
  2. Mirsalimov, V. M. (1974). On the optimum shape of apertures for a perforated plate subject to bending. Journal of Applied Mechanics and Technical Physics, vol. 15, iss. 6, pp. 842–845. https://doi.org/10.1007/BF00864606.
  3. Mirsalimov, V. M. (1975). Optimalnaya forma otverstiy dlya perforirovannoy plastiny [Optimum shape of holes for a perforated plate]. Izv. AN AzSSR. Seriya fiziko-tekhnicheskikh i matematicheskikh naukBulletin of the Academy of Sciences of the Azerbaijan SSR. Series of Physical, Technical and Mathematical Sciences, no. 5, pp. 93–96 (in Russian).
  4. Mirsalimov, V. M. (1976). Obratnaya zadacha termouprugosti dlya ploskosti, oslablennoy beskonechnym ryadom odinakovykh otverstiy [Inverse problem of thermoelasticity for a plane weakened by an infinite row of identical holes]. Izv. AN AzSSR. Seriya fiziko-tekhnicheskikh i matematicheskikh naukBulletin of the Academy of Sciences of the Azerbaijan SSR. Series of Physical, Technical and Mathematical Sciences, no. 2, pp. 110–114 (in Russian).
  5. Mirsalimov, V. M. (1977). Inverse doubly periodic problem of thermoelasticity. Mechanics of Solids, vol. 12, iss. 4, pp. 147–154.
  6. Savruk, M. P. & Kravets, V. S. (2002). Application of the method of singular integral equations to the determination of the contours of equistrong holes in plates. Materials Science, vol. 38, iss. 1, pp. 34–46. https://doi.org/10.1023/A:1020116613794.
  7. Vigdergauz, S. (2004). Genetic algorithm optimization of hole shapes in a perforated elastic plate over a range of loads. In: Burczyński, T., Osyczka, A. (eds) IUTAM Symposium on Evolutionary Methods in Mechanics. Solid Mechanics and its Applications, vol. 117, pp. 341–350. https://doi.org/10.1007/1-4020-2267-0_32.
  8. Mir-Salim-zada, M. V. (2007). Obratnaya uprugoplasticheskaya zadacha dlya klepanoy perforirovannoy plastiny [Inverse elastoplastic problem for riveted perforated plate]. Sbornik statey “Sovremennye problemy prochnosti, plastichnosti i ustoychivosti” Collected papers “Modern Problems of Strength, Plasticity and Stability”. Tver: Tver State Technical University, pp. 238–246 (in Russian).
  9. Vigdergauz, S. (2018). Simply and doubly periodic arrangements of the equi-stress holes in a perforated elastic plane: The single-layer potential approach. Mathematics and Mechanics of Solids, vol. 23, iss. 5, pp. 805–819. https://doi.org/10.1177/1081286517691807.
  10. Cherepanov, G. P. (1963). Obratnaya uprugoplasticheskaya zadacha v usloviyakh ploskoy deformatsii [Inverse elastic-plastic problem under plane deformation]. Izvestiya AN SSSR. Mekhanika i mashinostroyeniye News of the USSR Academy of Sciences. Mechanics and mechanical engineering, no. 2. pp. 57–60 (in Russian).
  11. Banichuk, N. V. (1980). Optimizatsiya form uprugikh tel [Shape optimization for elastic solids]. Moscow: Nauka, 255 p. (in Russian).
  12. Kalantarly, N. M. (2017). Ravnoprochnaya forma otverstiya dlya tormozheniya rosta treshchiny prodolnogo sdviga [Equal strength hole to inhibit longitudinal shear crack growth]. Problemy mashinostroyeniyaJournal of Mechanical Engineering – Problemy Mashynobuduvannia, vol. 20, no. 4, pp. 31–37 (in Russian). https://doi.org/10.15407/pmach2017.04.031.
  13. Mirsalimov, V. M. (2019). Inverse problem of elasticity for a plate weakened by hole and cracks. Mathematical Problems in Engineering, vol. 2019, article ID 4931489, 11 p. https://doi.org/10.1155/2019/4931489.
  14. Mir-Salim-zade, M. V. (2020). Determination of the equi-stress hole shape for a stringer plate weakened by a surface crack. Journal of Mechanical Engineering – Problemy Mashynobuduvannia, vol. 23, no. 3, pp. 16–26. https://doi.org/10.15407/pmach2020.03.016.
  15. Mir-Salim-zada, M. V. (2020). Ravnoprochnaya forma otverstiya dlya stringernoy plastiny s treshchinami [An equi-stress hole for a stringer plate with cracks]. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanikaTomsk State University Journal of Mathematics and Mechanics, iss. 64. pp. 121–135 (in Russian). https://doi.org/10.17223/19988621/64/9.
  16. Mirsalimov, V. M. (2020). Minimizing the stressed state of a plate with a hole and cracks. Engineering Optimization, vol. 52, iss. 2, pp. 288–302. https://doi.org/10.1080/0305215X.2019.1584619.
  17. Mirsalimov, V. M. (2021). Optimal design of shape of a working in cracked rock mass. Geomechanics and Engineering, vol. 24, iss. 3, pp. 227–235. https://doi.org/10.12989/gae.2021.24.3.227.
  18. Mirsalimov, V. M. (2022). Optimal hole shape in plate with cracks taking into account body forces. Mechanics Based Design of Structures and Machines, vol. 50, iss. 10, pp. 3475–3490. https://doi.org/10.1080/15397734.2020.1809453.
  19. Mir-Salim-zade, M. V. (2022). Optimization of the bearing capacity of a stringer panel with a hole. Journal of Applied Mechanics and Technical Physics, vol. 63, iss. 3, pp. 513–523. https://doi.org/10.1134/S0021894422030166.
  20. Ishlinsky, A. Yu. & Ivlev, D. D. (2001). Matematicheskaya teoriya plastichnosti [Mathematical theory of plasticity]. Moscow: Fizmatlit, 704 p. (in Russian).
  21. Muskhelishvili, N. I. (1977). Some basic problem of mathematical theory of elasticity. Dordrecht: Springer, 732 p. https://doi.org/10.1007/978-94-017-3034-1.
  22. Panasyuk, V. V., Savruk, M. P., & Datsyshin, A. P. (1976). Raspredeleniye napryazheniy okolo treshchin v plastinakh i obolochkakh [Stress distribution around cracks in plates and shells]. Kyiv: Naukova Dumka, 443 p. (in Russian).
  23. Mirsalimov, V. M. (1987). Neodnomernyye uprugoplasticheskiye zadachi [Non-one-dimensional elastoplastic problems]. Moscow: Nauka, 256 p. (in Russian).

 

Received 23 August 2025

Accepted 05 October 2025

Published 30 December 2025