DOI | https://doi.org/10.15407/pmach2016.02.050 |
Журнал | Проблемы машиностроения |
Издатель | Институт проблем машиностроения им. А.Н. Подгорного Национальной академии наук Украины |
ISSN | 0131-2928 (print), 2411-0779 (online) |
Выпуск | Том 19, № 2, 2016 (июнь) |
Страницы | 50–57 |
Авторы
И. В. Сергиенко, Институт кибернетики имени В. М. Глушкова НАН Украины (03187, Украина, г. Киев, пр. Академика Глушкова, 40)
О. Н. Литвин, Украинская инженерно-педагогическая академия (61003, Украина, г. Харьков, ул. Университетская, 16), e-mail: academ_mail@ukr.net
О. О. Литвин, Украинская инженерно-педагогическая академия (61003, Украина, г. Харьков, ул. Университетская, 16)
О. В. Ткаченко, Государственное предприятие «Запорожское машиностроительное конструкторское бюро« Прогресс »имени академика А.Г. Ивченко (69068, Украина, г. Запорожье, ул. Иванова, 2), e-mail: avt2007@outlook.com
О. Л. Грицай, Государственное предприятие «Запорожское машиностроительное конструкторское бюро« Прогресс »имени академика А.Г. Ивченко (69068, Украина, г. Запорожье, ул. Иванова, 2), e-mail: avt2007@outlook.com
Аннотация
В данной работе предложены и исследованы методы построения операторов восстановления дифференцируемых функций двух переменных в окрестности гладкой линии G: w(x, y) = 0 w Î Cr(R2), которые сохраняют класс дифференцируемости Cr(R2). Методы используют для построения указанных операторов следы восстанавливаемой функции и её частных производных по одной переменной до заданного порядка на указанной линии.
Ключевые слова: сохранение класса дифференцируемости, следы функции, следы производных на линии, полином Тейлора по одной переменной
Литература
- Вiдновлення функцiй двох змiнних iз збереженням класу Cr(R2) за допомогою їх слiдiв та слiдiв їх похiдних до фiксованого порядку на заданiй лінії / І.В. Сергієнко, О. М. Литвин, О. О. Литвин та ін // Доп. НАН України. ‑ 2014. ‑ № 2. – С. 50–55.
- Сергиенко,И. В. Системный анализ / И. В. Сергиенко, В. С. Дейнека. – Киев: Наук. думка, 2013.– 500 с.
- Сергієнко,І. В. Елементи загальної теорії оптимальних алгоритмів і суміжні питання / І. В. Сергієнко, В. К. Задірака, О. М. Литвин. – К.: Наук. думка, 2012. – 404 с.
- Тихонов,А. Н. Уравнения математической физики / А. Н. Тихонов, А. А. Самарский. – М.: Наука, 1966. – 724 с.
- Квасов, Б.И. Методы изогеометрической аппроксимации сплайнами / Б. И. Квасов. – М.: Физматлит, 2006. – 360 с.
- Шилов,Г. Е. Математический анализ. Второй спец. курс / Г. Е. Шилов. – М.: Наука, 1965. – 327 с.
- Никольский,С. М. Приближение функций многих переменных и теоремы вложения / С. М. Никольский. – М.: Наука, 1969. – 480 с.
- Бесов, О.В. Интегральные представления функций и теоремы вложения / О. В. Бесов, В. П. Ильин, С. М. Никольский. – М.: Наука, 1975. – 480 с.
- Стейн, И. Сингулярные интегралы и диференциальные свойства функций / И.Стейн. – М.: Мир, 1973. – 342 с.
- Владимиров, В.С. Обобщённые функции в математической физике / В.С. Владимиров. – М.: Наука, 1979. – 318 с.
- Хермандер, Л. Диференциальные операторы с постоянными коэффициентами / Л. Хермандер. – М.: Мир, 1986. – 455 с.
- Математическая энциклопедия / Под ред. И.М. Виноградова: В 5-ти т. – М.: Сов. энциклопедия, 1984. – Т. 5. – 1215 с.
- Литвин, О.М. Інтерполяція функцій та їх нормальних похідних на гладких лініях в Rn / О. М. Литвин // Доп. АН УРСР. – 1984. – № 7. – С. 15–19.
- Литвин, О. М. Точний розв’язок задачі Коші для рівняння / О. М. Литвин // Доп. АН УРСР. – 1991. – № 3. – С. 12–17.
- Литвин, О.М. Інтерфлетація функцій при розв’язуванні тривимірної задачі теплопровідності / О. М. Литвин, Л. І. Гулік. – К.: Наук. думка, 2011. – 210 c.
- Литвин, О. М. Інтерлінація функцій та деякі її застосування / О. М. Литвин – Харків: Основа, 2002. – 544 с.
- Литвин, О. М. Інтерлінація функцій / О. М. Литвин – Харків: Основа, 1993. – 235 с.
- Литвин, О. М. Методи обчислень. Додаткові розділи / О. М. Литвин. – К.: Наук. думка, 2005. – 331 с.
- Сергієнко, І. В. Математичне моделювання в комп’ютерній томографії з використанням інтерфлетації функцій / І. В. Сергієнко, О. М. Литвин, Ю. І. Першина. – Харків, 2008. – 160 с.
- Оптимальні алгоритми обчислення інтегралів від швидкоосцилюючих функцій та їх застосування: У 2-х т. Т. 1. Алгоритми / І. В. Сергієнко, В. К. Задірака, О. М. Литвин та ін. – К.: Наук. думка, 2011.– 447 с.
- Оптимальні алгоритми обчислення інтегралів від швидкоосцилюючих функцій та їх застосування: У 2-х т. Т. Застосування / І. В. Сергієнко, В. К. Задірака, О. М. Литвин, та ін. – К.: Наук. думка, 2011. – 348 с.
Поступила в редакцию 03 марта 2016 г.