DOI | https://doi.org/10.15407/pmach2021.02.050 |
Журнал | Проблемы машиностроения |
Издатель | Институт проблем машиностроения им. А.Н. Подгорного Национальной академии наук Украины |
ISSN | 2709-2984 (print), 2709-2992 (online) |
Выпуск | Том 24, № 2, 2021 (июнь) |
Страницы | 50–58 |
Автор
Г. В. Филатов, ГВУЗ Украинский государственный химико-технологический университет (49005, Украина, г. Днепр, пр. Гагарина, 8), e-mail: gvmfilatov@gmail.com, ORCID: 0000-0003-4526-1557
Аннотация
В статье рассматривается применение метода случайного поиска для оптимального проектирования однослойных подкрепленных ребрами жесткости цилиндрических оболочек при совместном осевом сжатии и внутреннем давлении с учетом упруго-пластической работы материала. В качестве критерия оптимальности принимается минимальный объем оболочки. Область поиска оптимального решения в пространстве оптимизируемых параметров ограничивается условиями прочности и устойчивости оболочки. При оценке устойчивости учитывается дискретное расположение ребер. Кроме условий прочности и устойчивости оболочки, на область допускаемых решений накладываются ограничения на геометрические размеры оптимизируемых элементов конструкций. Сложность при постановке задачи математического программирования состоит в том, что критические напряжения, возникающие в оптимальных сжатых подкрепленных цилиндрических оболочках, являются функцией не только параметров обшивки и подкрепления, но и числа полуволн в окружном и меридиональном направлениях, которые образуются в результате потери устойчивости. В свою очередь, число этих полуволн зависит от варьируемых параметров оболочки. Следовательно, область поиска становится нестационарной, и при постановке задачи математического программирования следует предусмотреть необходимость минимизации функции критических напряжений по целочисленным параметрам волнообразования на каждом шаге поисковой процедуры. В связи с этим предлагается методика решения задачи оптимального проектирования усиленных сеткой ребер оболочек с применением алгоритма случайного поиска, обучение которого осуществляется не только в зависимости от приращения целевой функции, но и от приращения критических напряжений на каждом шаге поиска экстремума. Целью работы является демонстрация методики оптимизации таких оболочек, при которой используется специальный алгоритм обучения системы поиска, состоящий в том, что одновременно решаются две задачи математического программирования: минимизация весовой целевой функции и минимизация критических напряжений потери устойчивости оболочки. Предлагаемая методика иллюстрируется на численном примере.
Ключевые слова: подкрепленная цилиндрическая оболочка, оптимальное проектирование, случайный поиск, критические напряжения потери устойчивости.
Полный текст: загрузить PDF
Литература
- Растригин Л. А. Статистические методы поиска. М.: Наука, 1968. 376 с.
- Растригин Л. А. Случайный поиск в задачах оптимизации многопараметрических систем. Рига: Зинатне, 1965. 287 с.
- Гурин Л. С., Дымарский Я. С., Меркулов А. Д. Задачи и методы оптимального распределения ресурсов. М.: Сов. радио, 1986. 513 с.
- Бочаров И. Н., Фельдбаум А. А. Автоматический оптимизатор для поиска минимального из нескольких минимумов. Автоматика и телемеханика. 1962. T. 23. № 3. C. 67–73.
- Катковник В. Я. Задача аппроксимации функций многих переменных. Автоматика в телемеханика. 1971. № 2. C. 181–185.
- Фиакко А., Мак-Кормик Г. Нелинейное программирование. Методы последовательной безусловной оптимизации. М.: Мир, 1972. 240 с.
- Химмельблау Д. Прикладное нелинейное программирование. М.: Мир, 1975. 534 с.
- Brooks S. H. A discussion of random methods for seeking maxims. Operations Res. 1958. Vol. 2. Iss. 6. Р. 244–251. https://doi.org/10.1287/opre.6.2.244.
- Каrnopp D. C. Random search techniques for optimizations problems. Automatica. 1965. Vol. 1. Iss. 2–3. Р. 111–121. https://doi.org/10.1016/0005-1098(63)90018-9.
- Shumer M., Stejglitz K. Adaptive step size random search. IEEE Trans. Automat Contr. 1968. Vol. 13. Iss. 3. P. 270–276. https://doi.org/10.1109/TAC.1968.1098903.
- Волынский Э. И., Филатов Г. В. Применение операторов сглаживания в оптимальном проектировании ребристых оболочек. Реф. информ. о законченных НИР в вузах УССР. 1976. Вып. 7. C. 24–25.
- Филатов Г. В. Приложение методов случайного поиска к оптимизации конструкций. Кн. 1. Саарбрюккен, Германия: LAP LAMBERT Academic Publishing, 2014. 184 с.
- Мацилявичус Д. А., Чючялис A. M. Об одном алгоритме случайного поиска для синтеза оптимальной упругой шарнирно-стержневой системы. Лит. мех. сб. Вильнюс: Минтас. 1970. № I (6). C. 77–83.
- Почтман Ю. М., Тугай О. В. Устойчивость и весовая оптимизация многослойных подкрепленных цилиндрических оболочек при комбинированном нагружении. Гидроаэромеханика и теория упругости. Днепропетровск: Днепропетр. ун-т, 1979. Вып. 25. C. 137–147.
- Почтман Ю .М., Филатов Г. В. Исследование деформаций гибких стержней методом статистических испытаний. Строит. механика и расчет сооружений. 1970. № 5. C. 36–39.
- Почтман Ю. М., Филатов Г. В. Оптимизация параметров ребристых пластин при колебаниях методом случайного поиска. Пробл. прочности. 1972. № 2. С. 83–85.
- Филатов Г. В. Весовая оптимизация сжатой цилиндрической оболочки с ограниченной долговечностью. Прикл. механика. 2006. Т. 42. № 3. С. 97–101.
- Gellatly R. A., Gallagher R. H. A procedure for automated minimum weight design. Part I. Theoret. Basis. Aeron. Quart. 1966. Vol. 7. Iss. 7. Р. 63–66.
- Golinski J., Lesniak Z. K. Optimales Entwerfev von Konstruktioner mit Hilfe der Monte-Carlo-Methode. Bautechnik. 1966. Vol. 43. Iss. 9. Р. 47–54.
- Filatov G. V. Application of Random Search Method for the Optimal Designing of Ribbed Plates. Intern. J. Emerging Techn. and Advanced Eng. 2019. Vol. 9. Iss. 10. P. 223–228.
- Фрайнт М. Я. Применение случайного поиска к задачам оптимального проектирования. Строит. механика и расчет сооружений. 1970. Т. 1. C. 87–91.
- Гужовский В. В., Попов Н. Н., Пасниченко В. И., Филатов Г. В. Оптимизация динамических систем верхнего строения роторного экскаватора ЭРП-2500. Горно-транспортное оборудование разрезов. Мин-во угольной пром-сти СССР. Киев: УкрНИИпроект, 1975. C. 3–12.
- Филатов Г. В. Приложение методов случайного поиска к оптимизации конструкций. моногр. Саарбрюккен, Германия: LAP LAMBERT Academic Publishing, 2014. 177 с.
- Филатов Г. В. Теоретические основы эволюции матмоделей коррозионного разрушения: моногр. Саарбрюккен, Германия: LAP LAMBERT Academic Publishing, 2014. 181 с.
- Пантелеев А. В., Родионова Д. А. Применение гибридного метода случайного поиска в задачах оптимизации элементов технических систем. Науч. вестн. Моск. техн. ун–та гражд. авиации. 2018. Т. 21. № 3. С. 139–149. https://doi.org/10.26467/2079-0619-2018-21-3-139-149.
- Сенькин В. С., Сюткина-Доронина С. В. Совместное применение методов случайного поиска с градиентными методами оптимизации проектных параметров и программ управления ракетным объектом. Техн. механика. 2018. № 2. С. 44–56. https://doi.org/10.15407/itm2018.02.044.
- Filatov H. V. Optimal design of single-layered reinforced cylindrical shells. J. Mech. Eng. 2021. Vol. 24. No. 1. P. 58–64. https://doi.org/10.15407/pmach2021.01.058.
- Filatov H. V. Optimal design of smooth shells both with and without taking into account initial imperfections. J. Mech. Eng. 2020. Vol. 23. No. 1. P. 58–63. https://doi.org/10.15407/pmach2020.01.058.
- Фридман М. М. Оптимальное проектирование трубчатых стержневых конструкций, подверженных коррозии. Пробл. машиностроения. 2016. Т. 19. № 3. С. 37–42. https://doi.org/10.15407/pmach2016.03.037.
- Пальчевский А. С. Расчет стрингерных цилиндрических оболочек минимального веса при совместном осевом сжатии и внутреннем давлении. Прикл. механика. 1970. T. 6. Вып. 10. C. 49-54.
- Аміро I. Я. Дослідження стійкості ребристої циліндричної оболонки при повздовжньому стиску. Прикл. механіка. 1960. Т. 4. Вип. 3. С. 16-23.
- Burns A. B. Combined loads minimum weight analysis of stiffened plates and shells. J. Spacecraft and Rockets. 1966. Vol. 3. No. 2. P. 235–240. https://doi.org/10.2514/3.28425.
Поступила в редакцию 13 июля 2020 г.