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UDC 62-762.642.4 Stuffing box seals are the most common type of pump rotor seals because they
are adjustable and periodically restorable assemblies during operation. Based

DESIGN IMPROVEMENT | ©» the study of physical processes, a sealing mechanism model of the stuffing box

seal is formed as a combination of two successive hydraulic resistances: a pre-

OF STU FFING switch resistance, which is similar to a slotted choke, and a contact seal, where
BOX SEALS the shaft is directly sealed. The area where the packing contacts the shaft is the

sum of the microregions where contact pressures occur. The system of labyrinth
OF CENTRIFUGAL channels through which leakage occurs is physically closest to the filtration of
PUMP SHAFTS, fluid through a porous body layer. A method is proposed for calculating the

BASED ON THE STUDY stress state of the packing by solving the hydroelasticity problem. Obtained are

expressions for calculating the gap and sealed pressure distribution over the

OF THE SEALING radial stuffing box seal as well as leakage through the seal. Radial and angular
MECHANISM displacements of the shaft axis with respect to the axis of the stuffing box are

taken into account, leading to the occurrence of additional contact packing pres-
PHYSICAL MODEL sures on the shaft and areas of weak contact of the packing with the shaft, which

leads to increase in leakages. The desire to limit them encourages maintenance
Serhii S. Shevchenko personnel to increase the axial compression of the packing, which leads to an
s.shevchenko @united.productions even greater increase in local contact pressure. Proposed are stuffing box de-
ORCID: 0000-0002-5425-9259 signs with a radially movable, self-aligning packing set relative to the shafft,

which provide the equalization of contact pressure and increase in service life.
United Productions Atom LLC, Obtained are expressions for finding the minimum values of the parallel and
36, Prokofiev St., Sumy, angular misalignments, at which a stuffing box under the action of the centering
40016, Ukraine force and moment starts tracking the shaft radial and angular displacements.

Radial mobility prevents the areas of separation of the packing from the shaft
and the formation of contact spots with increased pressure.

Keywords: stuffing box seal, sealing mechanism, contact pressure, misalign-
ment, self-aligning.

Introduction

Reliability and efficiency of pumping equipment are largely determined by rotor sealing systems
(seals): up to 70% of failures are due to seal failures. A rotary shaft seal is the most vulnerable pump unit.

The most common type of pump rotor seals are still stuffing box seals. Surveys conducted by the
European Sealing Association showed [1] that in Western Europe up to 85% of pumps are equipped with
stuffing box seals. The widespread use of radial stuffing box seals is due to their relative simplicity and low
cost. At the same time, the traditional designs of stuffing box seals are characterized by organic disadvan-
tages: relatively large leakages of the fluid being sealed and a limited service life. Since the number of oper-
ated stuffing box seals is in millions, the problem of increasing their reliability, tightness, and economy is of
great importance for resource and energy conservation, as well as for environmental protection. Thus, the
task of increasing the technical level of stuffing box seals remains relevant. The solution to this problem re-
quires a detailed analysis of the hydromechanical processes occurring in seals.

Despite the fact that a stuffing box seal is one of the oldest and simplest designs, the mechanism of its
sealing action is very complex and has been studied relatively recently. Creating a physical model of the sealing
mechanism is the basis for the development of radial stuffing box seals with a long service life and tightness.

Sealed Pressure Distribution and the Sealing Mechanism of a Stuffing Box Seal

As indicated in [2], the contact pressure of the packing on the shaft at a low sealed pressure charac-
terizes the pre-stressed state of the packing. The distribution of axial and radial stresses along the packing set
length is described by the equations

6.=pe ™, o, =ko., (1)
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R . . . . .
where q, :r—kn(f1 +%f2j k :V/(l—v); v is Poisson's ratio for the packing material; R, r, r,, are the

outer, inner, and middle radii of the packing set; n=1/b is the number of sealing rings; [ is the packing set

length; b is the size of a side of the square section of the packing; f, are the coefficients of friction of the
packing along the body and the shaft.

For a region of relatively large sealed pressures, only minimal pre-tightening forces are required.
Further, the tightness of the seal is ensured by compressing the packing set with the sealed pressure. The
cover in this case plays the role of a hard axial thrust [2].

During pump operation, the sealed pressure p; acts on the inner rings. If p;>p,, then the packing will
be pushed away from the shaft and from the bottom of the stuffing box seal (Fig. 1). In a certain area /;, a
small gap 4 is formed in which the leaking fluid is under the variable-length hydrostatic pressure p;.

The results of studies of sealed pres-
sure distribution along the packing set length
(Fig. 2) presented in [3] showed that from the Iy
side of the fluid being sealed, there is an area b

. iz
-l—>

where the sealed pressure in the gap varies P
slightly. The packing in this area either does \ —
not create large contact pressures or is com- [
pletely squeezed out from the shaft. In an-
other area whose length decreases with in-
creasing sealed pressure, the main throttling it ShEEEE itk . >
of the sealed pressure occurs. In this area are 0 Zx Iz
created the maximum contact pressures of
the packing on the shaft, exceeding the
sealed pressure. The nature of fluid pressure

distribution in this area is similar to that in a 1 =
stuffing box seal at low pressure. § i%%z\

Analysis of the research results [4, 5, 0,8 ’\\ e ™
6] shows that the sealing mechanism is de- \\\ \\
termined by the stress-strain state of the 0,6 P, MMa AN
packing under the influence of the external - 2.0 \\\
load and pressure in the gap. 04 X-1,5

From this, the sealing mechanism ‘ - 1,0 \\\\

X . . =-08

model of a stuffing box seal is logically 0.2 +-06
formed as a combination of two sequentially ©-04 N
located hydraulic resistances: a pre-switch _
resistance, which is similar to a slotted choke, 0 0.25 05 0.7% 104
and a contact seal, where the shaft is directly Fig. 2. Sealed pressure distribution along the contact length
sealed. In this case, the pre-switch area, which in the standard stuffing box seal design

is under the action of almost full sealed pres-
sure, creates significant stresses in the packing
set. When the latter is deformed, contact
stresses arise on the working section. The val-
ues of these stresses are determined by the
sealed pressure, physico-mechanical proper-
ties, and the size of the packing. A significant
role is played by the shapes of supporting sur-
faces and the load application pattern deter-
mined by the stuffing box seal design.

Fig. 3. A physical model of the sealing mechanism
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The values of the contact stresses on the working section can be comparable with or exceed values of
the sealed pressure before the packing set. The mechanism of leakage in this case will be similar to the mecha-
nism of leakage through the stuffing box seal at low pressure. The zone where the packing contacts the shaft is
the sum of the microregions where contact pressures occur that separate the microregions filled with the fluid
being sealed. (Fig. 3). The appearance in the contact area of a system of labyrinth channels through which leak-
age occurs is determined by the looseness in the packing structure, shaft runouts, local thermo-hydraulic ef-
fects, and other factors. The cross section of these channels decreases with increasing contact pressure. Physi-
cally closest to this throttling mechanism is fluid filtration through a porous body layer [7, 8].

In the stuffing box seal model, the filtering layer is the packing surface contacting the shaft. The mi-
croroughness height of the layer is determined by the braiding structure and diameter of fibers of the braided
packing.

Calculation of the Stressed State of the Packing
The main characteristics of a stuffing box seal: the leakage of the fluid being sealed, power loss due
to friction, and thermal state are determined by the length of the area of direct contact of the packing with the
shaft and the contact pressure value [9]. To determine them, it is necessary to solve the hydroelasticity prob-
lem, i.e. the equations of fluid motion and the equations of the stress-strain state of the viscoelastic packing.
The equation of axial equilibrium of a ring packing element have the form

Ac,—(A+dA)o,+do,)-F =0, )

where A=n|R? = (r+h)*| dA=-2n(r + h)dh, F, = 2nRf0,dz .

Given that the pre-molded packing is in a compressed state between the rigid shaft and the housing,
its small circumferential strains can be neglected. Excluding the circumferential stresses, since they are uni-
formly distributed around the circumference of an elementary ring, we write the equilibrium condition in the
radial direction

2nRdzG, =2nrdzp,, ©,=p,r/R.

Neglecting the product of differentials in equation (2), as well as the ratio s/r compared to unity, we
reduce the equation of equilibrium to the form

L _L[nfl\&—ld—ﬁJ . 3)
Gz rm GZ b dZ

After calculating the gap and hydrostatic pressure from equation (3), we can find the boundaries 7
of the gap area /; and contact area /., as well as the radial stresses in the contact area.

We calculate the gap and sealed pressure distribution therein. Within small strains, the pre-pressed
packing can be considered a linearly elastic material. The relative radial strain of such a packing with the
elastic modulus E, in which there are already radial stresses p., is obtained by the formula

h p,—p,
T _ s c , 4
b E “)
At the boundary of the gap area and contact area, p_ = p., and the gap is zero.
The contact pressure at the boundary of these areas p,, = pg(i) + pg) . Using (3), we find
p. = kp{e‘“ﬂ s Lat g (H)} . )
P

Numerical estimates show that in the contact area /., the value p. changes by no more than 10%.
Therefore, we accept that in the contact area, p. = p_, =const, and the gap derivative is
b _p s
dz E
To calculate the fluid pressure in the gap, we use the Hagen-Poiseuille formula for a flat channel of
length dz and the flow continuity condition

(6)
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nrh’ dp,
=— —= =const.
6u dz
Thus, the gap and pressure are determined by the joint solution to the equations of elasticity and
hydromechanics, i.e. the solution to the static hydroelasticity problem.

Substituting the gap value (4) into the foregoing equation, we obtain the equation

nrb3 3
- -p.)dp,,
oulE’ (p, = p..)dp
the solution to which must satisfy the conditions z=2,, p,=p..; =0, p, = p,. Integrating the foregoing

qdz =

equation over the gap length, we have
_+ B
, g2 =E(pl—pc*)4, B=7trb3/24pl. (7)
Dividing the first equality by the second one, we find the hydrostatic pressure distribution over the
gap length and the pressure gradient

Py = po+(pr - p =2/ ), %}%(1—2/2*)‘%. ®)

We note that at the boundary of packing set areas 7 =7, the pressure gradient and gap derivative (6)
become zero. In the contact area, the flow has the filtered character, and therefore, in accordance with
Darcy's law, the fluid pressure decreases linearly along the area length. Thus, equations (8) describe the dis-
tribution of fluid pressure along the length of the packing set of a radial stuffing box seal.

gz -7)= % (p,—p.)

Returning to the above remarks, we compare the indicators af = a;, using expressions (1), (5), and
(8) at the boundary of the areas. After some transformations, we obtain the relative gap area length

. +h{b1’1]
7= P/ ©)

a, +a,
Formula (9) allows us to determine the conditions under which the gap is not formed (Z* < O) and

spreads along the entire packing set length (Z* 2 1)

b r
Knowing the gap area length (9) and using the second formula in (7), we can calculate the leakage of
the fluid being sealed through the stuffing box seal

q=ﬁ(pl—pc*)“. (10)

Formula (10) shows that as the fluid pressure increases, the leakage increases to a certain maximum
value, and then gradually decreases to zero. Operating experience shows that such a decrease in leakage
causes a sharp deterioration in lubrication conditions, and, as a result, the melting of impregnation and de-
struction of stuffing box seal fibers. The value of fluid pressure at which the leakage approaches zero can be
taken as the maximum allowable for the given packing and the stuffing box seal design.

The proposed model of the sealing mechanism also allows us to explain the monotonic decrease in
the level of leakage over time, known from operating experience and described by a number of researchers in
[8, 10]. This phenomenon has little connection with the running-in ability of a friction pair, since it can last
for hundreds of hours. One of the main reasons is the creep of the packing material due to the pressure of the
fluid being sealed, leading to a slow increase in the true area of contact of the packing the with the shaft.
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Account of Combined Misalignment

Radial and angular displace-
ments of the shaft axis relative to the y
stuffing box axis lead to the appearance
of additional contact pressures Ac, vary-
ing around the circumference and pre-
compressed packing set length. 7 e

For their approximate assessment, s \K - O - T — o S
we consider additional strains of the pre- | Z )Cx 0 2 ><\’f/ x
compressed packing (Fig. 4). If we denote = 8 ,
its thickness in the unstrained state by b,
then with the shaft offset misalignment e, ‘ .
the mid-section thickness z=0 correspond-
ing to the angular coordinate ¢ can be rep-

resented by the expression |  Fig. 4. Packing strains in the case of combined shaft and housing
by =b"(1-&-cos@), where e=e/b. misalignment

]

The change in the packing thickness along the packing set length, caused by the angle ¥ between
the intersecting axes of the shaft and the sleeve, is estimated by the summend —®zcos¢@ (correction to the

misalignment), the angle being considered positive if the shaft axis is rotated counterclockwise. The resulting
packing thickness along the packing set length and circumference is expressed by the formula

b=b"[1-(e—0z)cos 9], e:&%b* :
The relative radial compressive strain is
(b"—b)1b" =€, =(e-9.)cosg.
If we neglect small circumferential strains, then equations (1) take the form
6,-v(o, +0,)=E(e—6Z)cos¢, 6, -v(o, +5_)=0.
Excluding the circumferential stresses, we find

E _
6,=6,,+Ac,, Ao, = (e—6Z)cos . (11)

Here, G, is determined by formula (1), and is

independent of the circumferential coordinate.

The diagrams of both contact pressure compo-
nents in the polar coordinate system are shown in Fig. 5.

The resulting expression allows us to find the
coefficients of both the radial and angular stiffnesses of
the packing set according to the results of calculating the
radial pressure force and the restoring moment. The pro-
jection onto the Oy axis of the elementary pressure force
is dF, =—G rcos@d@dz, and its moment relative to

the Ox axis is dM ,, =—zdF,. We integrate these ex-
AGy>0
pressions with account taken of (11) over the entire inner

surface of the packing set

Fy0=kr0€’ M, =kyV, (12)
where the radial and angular stiffness coefficients are
k.= _n_rli 50 = rl . E . (13) Fig. 5. Diagrams of contact pressure components
’ b 1=V 126" 1-v?

around the shaft circumference
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The packing elastic modulus E is a conditional value, because it increases as the packing is compressed.

A preliminary assessment of the misalignment effect on the contact pressure value shows that the
maximum pressure increase due to misalignment is 2-3 times higher than the constant pressure c; around the
circumference (Fig. 5). Such a sharp increase in pressure causes a local increase in contact temperature, and re-
duces the service life of a stuffing box seal. Moreover, from the diametrically opposite side (for ¢=m), the total
contact pressure becomes negative, i.e. tensile stresses must occur in the packing. Since this is impossible (there
is no bilateral constraint between the packing and the shaft), a gap is formed in the areas with negative contact
pressure between the shaft and the packing. Such separation areas affect the magnitude of radial forces and mo-
ments (12), the friction power, as well as the seal performance, in particular, leakages and the thermal state.

The position of the sections in which maximum tensile stresses occur (according to the rule of signs
Ab=b"-b<0 accepted here) is seen in Fig. 6: such a cross section is zZ,, =1 if both the offset and angular mis-

alignments have different signs (¢6<0) and the cross section z,, =—1 when €0>0. The corresponding angular

coordinate is ¢,=n for €>0 and ¢,=0 for €<0. Fig. 7 depicts scans of the inner surface of the packing set,
showing areas of zero contact pressures for various combinations of offset and angular misalignments. Sub-
sequently, when calculating the integral characteristics of stuffing box seals, associated with the contact
pressure o, these areas must be excluded from consideration.

At the same time, it must be borne in mind that the gap formed between the packing and the shaft, if it
is located from the side of the camera with the fluid being sealed, is filled with the same fluid under pressure,
which causes additional strains of the packing and expands the non-contact areas. Their expansion is also facili-
tated by hydrodynamic effects in the gaps due to the rotation of the shaft, its radial and angular vibrations.

€0<0 c0>0

— | / Zn=—1
o9 1 (]
] el 4 >
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Fig. 6. Position of the sections of possible shaft separation from the packing
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Fig. 7. Forms of the areas of zero contact pressures
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To estimate the value of non-contact areas, we solve a simpler problem: we find the points ¢ and z,
located at the vertices of the curved triangle B (Fig. 7, ¢), which limits the region of zero contact pressure. Sub-
sequently, this region can be approximately represented as an isosceles triangle, as shown in Fig. 7, c, by
dashed lines or an equal area rectangle.

Equating to zero the contact pressure expression (11) in the extreme sections z,,=+1, in which separa-
tion areas have the greatest angular extent, we find the angular coordinates corresponding to these areas

¢ =tarccos® (®>0), o=n+¢ (P<0),
® =—expla(1£1)]/ S(eF0), (14)

where S = E/G_l(l—vz).
In the second expression (14), the upper sign refers to the cross section z=1, and the lower one refers

to the cross section z=-1. In modulus, the cosine cannot be greater than unity; therefore, the areas of zero
contact pressure are possible only for such combinations of shaft offset and angular misalignment parameters

(g, 9) at which I®I<I. In turn, it follows from (14) that in the right cross section (z=-1) this condition is satis-

fied when the offset and angular misalignments have the same signs or one of these parameters is zero: £3>0.
In the left cross section z=1, these parameters must have opposite signs. Positive values of @ correspond to

¢,,=0, i.e. negative offset misalignment values (e<0); at £>0, @,=m and ©<0.
The 7 coordinate of the third vertex of the area B is located in the plane of the intersecting axes of
the shaft and stuffing box, i.e. at ¢,= and ®<0 or &. Equating to zero the contact pressure (11), we obtain

the transcendental equation relative to Z
c_, exp[a(l -7 )]— 1(8 -0z )% V2 )

Since the exponent index is always less than unity, an approximate solution to this equation can be
found by expanding the exponential function in a series and preserving only the linear terms

explall+07")|=1+all+07").
In this case, we obtain
7 =(+axSe)/(+50—-a). (15)
The upper signs in formula (15) correspond to ¢,=0 (¢<0), and the lower ones, to ¢,=7 (€>0).

The components of the pressure force and its moment

AF:—J-G}, cos@dB , AM = J-G),zcos(de (16)
(B) (B)

enter into expressions (12). In fact, they do not exist, since the contact pressure in the area B is zero. There-
fore, as the adjusted values of radial forces and moments, if we do not take into account the pressure of the
fluid filling the gap formed, we must accept

F,=F,-AF, M =M ,—AM . a7
The calculation of integrals (16), even if the area B is represented as an isosceles triangle, leads to

unreasonably cumbersome expressions. Considering the proximity of the presuppositions embedded in the
proposed calculation (first of all, the assumption about the linearly elastic properties of the packing), we re-

place the area of zero contact pressure with the equal rectangle r¢° (1— z )l /2 (B; in Fig. 7, c¢). In order that

the integration results can be used for the areas B located both in the right (z=I/2) and left (z=-1/2) halves of
the packing set, we denote the integration limits along the packing set length by & and o,. For the left half

(eo< O)OL1 =7, 0=1; for the right one, (6 > 0)a, =—1, 0, = 7 . The limits of integration over ¢ are from 0

to @ for £<0 and from & to m+¢ for £>0.
When the offset misalignment sign changes, all the results remain unchanged if the coordinate sys-
tem is rotated around the Oz axis by 180 °, i.e. direct the Oy axis against the offset misalignment vector.
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The first contact pressure term O, (11) depends only on the preliminary compression of the packing.
The corresponding integrals (€<0):

%% %
AF, ——3?[&[660 cos Ododz , AM = E')‘0_!.(5)701 cos pdodz

after integration yield

. *
(¢ leﬂrlsm(p (eaqz

2 . *
-_5 ac. _o_e'rl"sing
AF, =— -, AMy=—1—7—"

2a 4a’
When the area of zero contact pressure is located in the lower part of the gap (e>0), the sign of the
sine changes, and expressions (18) change the signs.
If the exponents are expanded in a series, and only the linear terms are retained, then formulas (18)
will be somewhat simplified

" (aa, —1)— e (a0, —1)] (18)

G_erlsin@ G_e'rl*sin@

AF, =7F (a,—a,), AM, =+ Yo, —a). (19)

The upper signs correspond to £<0, and the lower ones, to €>0.

Corrections (19) represent the imaginary packing pressure on the shaft from the side of the larger
gap, i.e. are directed against restoring forces and moments (12), therefore, in accordance with formulas (17),
they increase the resulting force and moment.

After the integration of the second term (11) where combined misalignment is taken into account, we

obtain

E rlo sin 2¢" s 2
AF);:—I_V2 1 (1+ 20 ][(ocz—al)s—O,S(ocz—ocl)G],
E rlz(p* Sin2(p* 2 2 2 3 3
= 1+ . o, —o)E—— (0, —0o)0 |. 20
X 1_V2 16 ( 2(p j|:( 2 1) 3( 2 1) ( )

Expressions (20) can be represented in terms of the coefficients of radial (k,,), angular (kss), and
cross (ks=ks,) stiffnesses

AF, =k, e+k 0, AM  =ky.e+ kg0, 2D

where the stiffness coefficients after substituting the corresponding limits of integration over Z take the form

- Ezrl(p* 1_|_s1n2:p (112*),
1-v® 4b 2¢

E rl* . sin 2" 2
k=t | 145220 (l—z j
1-v~16b 2¢

3 . *
yy = E i rl o[ 1+ s1n2:p [112*3)
1-v~ 48b 2¢
In these formulas, the upper sign refers to the left half of the packing set (Em =1), and the lower one,
to the right (z,, =—1).
Unlike corrections (19), expressions (21) are obtained by summing the negative pressures Ao, condi-
tionally acting on the non-contact area B in the direction of the main force factors (12). Therefore, they have

opposite signs (19), and when formulas (17) are used, they reduce the restoring force and moment. Thus,
components (19) and (21) partially compensate each other.
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The existence of the area where the contact of the packing with the shaft is weak leads to an increase
in leakages, and the desire to limit them encourages maintenance personnel to increase the axial compression
of the packing, which leads to an even greater increase in local contact pressure.

As can be seen from (11), for the absence of separation over the entire contact surface, it is necessary
that there be fulfilled the condition (6,,) > (Ac,) or

min max

6, > E(e+9)/(1-v?)
From (22) it follows that combined misalignment must not exceed the value
e+0<o,(1-v2)/E.

Note that the radial stiffness of the stuffing box seal (k,¢=1.19-10'N/m) is comparable to the stiff-
nesses of the bearings (approximately 3-10’ N/m) and the shaft (about 4.5-10" N/m). Consequently, stuffing
box seals can exert effect on the vibrational characteristics of the rotor, although this effect is unstable, since
the elastic characteristics of the packing can change significantly during operation.

When analyzing the effect of misalignment, we should bear in mind that both offset and angular mis-
alignments are random, periodically changing parameters. Therefore, during operation, the packing experiences
alternating loads, proportionate to the parameters of misalignment and causing its accelerated destruction.

Stuffing Box Seal with a Radially Movable Stuffing Box

The operating experience of stuffing box seals indicates that their service lives are significantly re-
duced due to shaft angular misalignments and runouts. This is explained by the fact that packing sets have large
radial rigidity, and even small radial strains are accompanied by a sharp increase in contact pressures (11).

In designs of stuffing box seals with radially movable, self-alighning (relative to the shaft) packing
sets [11], an axially movable stuffing box providing pressure equalization along the length, along with the
packing and restrictive rings, has freedom of radial movement. Under the action of the forces from the non-
uniform circumferential contact pressure, the entire stuffing box seal tends to take a concentric shaft-related
position at which the axial asymmetry of contact pressures is eliminated.

(22)

Self-aligning versions of
stuffing box seals for different op-
erating conditions are shown in
Fig. 8. In versions a—c are allowed
external leakages of the fluid being

%

Py

i

sealed. In version b, the stuffing S 17 o

box is located outside the pump ><

body, which improves heat removal

to the surrounding atmosphere. In [=420nfey TRADRG e
versions ¢, d, cooling fluid is sup- a b

plied to the stuffing box, and in the
latter version, it locks the outlet of
the fluid being sealed. Such design

LPe.

versions are characterized by more //':/// ;

efficient heat removal and ease of | HWEma— 72/ A4 WV 770 e “

packing replacement, as both the //‘ 7

packing and stuffing box are re- 5 oy \\’”’”’(\{1‘5:“““““\, ;

moved from the pump body. ¥ - N "/ ‘VV}‘ :I ‘L'_’l :\{5
The condition for the self- 7 7

P1

alignment of a stuffing box is the ex- To 4000 PocPs ? T5 4000 PusPy J
cess of both the radial centering force o peleesessesssesesteesesseeses (i
and the restoring moment (12), re- c d

spectively, over the total friction
force Fp = f F. on the contact end

Fig. 8. Self-aligning stuffing box seal designs
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belts of restriction rings (fis the friction coefficient on the end belts) and over the overturning moment of friction
forces. Such a moment arises if the friction forces on the contact end belts of restriction rings differ in magnitude
due to the unloading of the internal joint by the axial force p4;.

The friction force on the outer ring is Fy, = f 6, A, and on the inner ring, Fy, = f(0,A—p/A;). We

will assume that the radial pressure is constant along the packing set length (due to the axial mobility of the
stuffing box) and is selected from the condition 6, =06_, =k, p, where k=1 is the safety factor providing

the required tightness. Using the relationship between axial and radial stresses, we obtain
Fro, =fkiAp 1k, Fp,=Fpy(1=xKk/k)), Fp =Fp + Fyy =2Fp,(1-xk/2k)). (23)

The friction forces yield the moment with respect to the Ox axis, tending to rotate the sleeve axis
relative to the shaft axis

My =(Fp,—Fp)LI2=xfApL/2,
where k=A4,/4; L is the distance between the end friction surfaces.

From the conditions for self-alignment Fyo=Fg, M,c=Mk,, taking into account expressions (12), (13),
(22), (23), we find the minimum values of the relative parallel misalignment € and the angular misalignment
parameter 0, at which a stuffing box under the action of the centering force F,, and moment M, starts track-
ing the shaft radial and angular displacements

kb’ Lp1 (-

e =2f1+R/ ) kb P1 A-v)(A-Kk/2k)0 =3f1+R/r)—5—L(1-Vv?).

Thus, radial mobility prevents the areas of separation of the packing from the shaft and the formation
of contact spots with increased pressure.

Conclusions

The physical model of the sealing mechanism of a stuffing box seal, formulated in the article, made
it possible to explain the main features of its operation.

Studies have shown that the alignment of contact pressures not only along the packing set length, but
also around the circumference is a significant reserve for increasing the stuffing box seal service life.

The development of new effective designs of stuffing box seals allows eliminating the main disadvan-
tages of the standard design while maintaining its main advantages — ease of maintenance and relative cheapness.
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Y10CKOHATIOBAHHA KOHCTPYKIIH CATbHUKOBHX NPUCTPOIB BAJIIB BiIIECHTPOBUX HACOCIB HA OCHOBI
BUBYEHHA (Pi3HIHOT MoaeTi MexaHi3My repMeTu3anii

C. C. llleBuenko

TOB «lOmnaiiren IIponakienc — ATom»,
40016, Yxpaina, m. Cymu, Byi. [Ipokod'eBa 36

CanvHukosuti npucmpiil — HAUOLIbUW NOWUPEHUT MUN YUWiIbHEeHb POMOPI@ HACOCIE, OCKLIbKU € MAKUM Y310M, WO pe-
2YTIOEMbCS. MA NEPIOOUUHO BIOHOBTIOEMbCA 68 npoyeci exchayamayii. Ha niocmasi euguenns gizuunux npoyecie cghopmosana
MOOeb MEeXAHIZMY 2epMemu3ayii CatbHUKOB020 NPUCPOIO SIK NOEOHAHHSL OB0X NOCTIO06HO PO3MAUOBAHUX 2IOPAGTIUHUX ONO-
I8 NepeosKIioUeH020 ONopY, WO € AHANOSTYHUM WILTUHHOMY OpOCeio, Ma KOHMAKMHO20 YujiibHerHs, de 6i00y8acmvcsi 6e3no-
cepednst cepmemu3ayisi 6ad. 30Ha KOHMAKNTY HADUBKU 3 8ATIOM BISIE COOOI0 CYMY MIKPOOLISHOK, HA SIKUX GUHUKAIOMb KOHMA-
xkmui mucku. Cucmema 1aOIPUHMHUX KAHATIB, NO SKUX 8i00Y6AcmbCs UMIK, (i3uuHO € HAUOibW 6IU3LKOI0 00 (intbmpayii pi-
OuHU KPI3b wap NOpucmozo mind. 3anponoHosano Memoo PO3PAXyHKY HANPYHCEHO20 CMAHY HAOUBKU WISIXOM PO36 SI3aHHS
3adaui 2ioponpysicnocmi. Ompumaro eupasu 015t OOUUCTICHHsL NPOMINCKY MA PO3NOOLTY MUCKY PIOUHU, WO VULTbHIOEMbCS, NO
008IHCUHI PAOIATILHOZO CATILHUKOB020 NPUCPOIO, 4 MAKONC IT 6UmMpam Kpizb YiibHeHHs. Bpaxoeano padianvhi i Kymosi 3mi-
WeHHsL OCI 8ala BIOHOCHO 00 OCI CAILHUKOBOL KOPOOKU, SIKI NPU3600simb 00 GUHUKHEHHS 000AMKOGUX KOHMAKMHUX MUCKIE Ha-
bummst Ha éa, i obnacmell POKPUMMsL KOHMAKNMY HAOUBKUL 3 6A/IOM, Wj0 NPU3600ums 00 30inbiienHs eumokis. Hamaearnms ix
0bMedcUmU CNOHYKAE 00CTY208YIOHULL NEPCOHAT 30LbULYBAMLU 0CbO6Ee OOMUCHEHHSI HAWUGKL, d Ye NPU3600ums 00 e OLIbUo-
20 3POCMAHHS MICYEB020 KOHMAKMHO20 MUCKY. 3anponoHO8aHO KOHCMPYKYIT CATbHUKOBUX NPUCIPOLE 3 PAOIATbHO DYXOMUM,
CaMOYEeHmMpyBaIbHUM GIOHOCHO 00 6414 NAKEMOM HAOUBKU, U0 3a0e3nedyiontb UPIGHIOBAHHSI KOWIMAKMHO20 MUCKY Ma Ni08u-
WEHHS. pecypcy CalbHUK08020 npucmpoio. Ompumano eupasu Ost 0OYUCTEHHST MIHIMAILHUX 3HAYEHb NAPATETbHOT ma KYymoeol
HecniggicHocmell, 3 SIKUX CATbHUKOBA KOPOOKA Ni0 BNIUBOM GIOYEHMPOBUX CUI A MOMEHMY NOYUHAE BIOCTIOKO8y8amu paoia-
JbHe ma Kymoge 3miwgenis eana. Padianvha pyxaugicmo 3anobieae nosasi oonacmeti 6iopusy HAOUSKU i) 6ana ma YmeopeHHIO
NAAM KOHMAKMY 31 30UTbUeHUM MUCKOM.

Kniouosi cnosa: canvnuxosuti npucmpii, Mexanizm 2epmemusayii, KOHMAKmMHUL MUCK, HecnigicHicmo, camo-
YeHMPYBAHHSL.

Jliteparypa

1. Gaft J., Marcinkowski M. A choice of the seal for the shaft of the pump. Proc. Pump users Intern. Forum (29—
30 sept. 2004). Karlsruhe, 2004. P. 37-44.

2. Mapuunkosckuit B. A., [Ilesuenko C. C. Hacocsl aTOMHBIX 3JIEKTPOCTAHIIMIA: pacdeT, KOHCTPYHPOBAHHE, IKC-
mryaTtamnus: MmoHorpadwus / mox oomr. pexn. C. C. llleuenko. Cymsr: YHUBep. KH., 2018. 472 c.

3. Marzinkovski W., Gaft J., Schewtschenko S. Calculation of Flow and Power Losses to Friction in Radial Stuff-
ing Box Seal. Seals and Sealing Technology in Machines and Dewices: proc. IX Intern. Conf. Wroclaw: Po-
lanica Zdroj, 2001. P. 108-115.

4. Gaft J. Z., Marzinkovski W. A. Die Untersuchung newer Konstruktionen von radialen und axialen Packungs-
dichtungen. / X Internationales DichtungsKollogium Unter-suchung und Anvendung von Dichtelementen. Stein-
furt, Germany: Vortrage, 1997. P. 182-205.

5. Diany M., Bouzid A.-H. Analytical evaluation of stresses and displacements of stuffing-box packing based on a
flexibility analysis. Tribology Intern. 2009. Vol. 42. No. 6. P. 980-986.

6. Diany M., Bouzid A.-H. An experimental-numerical procedure for stuffing-box packing characterization. Ameri-
can Society Mech. Eng. (ASME) pressure vessel and piping division. 2010. Vol. 2. P. 183-189.

ISSN 0131-2928. Ilpobaemu mawunobyoysanns. 2020. T. 23. Ne 2 51



DYNAMICS AND STRENGTH OF MACHINES

7. Derenne M., Masi V. Predicting gasket leak rates using a laminar-molecular flow model. Proc. of the
ASME/JSME, PV. P. Conf., Denver. 2005. Vol. 2. P. 87-96.

8. Tadr . 3., MapruakoBckuii B. A., 3aropynbko A. B. MexaHn3M repMeTH3ayy U pacyeT paauaibHbIX CalbHU-
KOB. [ epmemuynocms, 6UOPOHAOEIHCHOCHb U IKOIO2UYECKAsT 6E30NACHOCHb KOMAPECCOPHO20 000PYO08aAHUSL:
Tp. 10-1i MmexxmyHap. Hayd.-TexH. kKoH}. Cymbl: Cym. yH-T, 2002. T. 2. C. 46-57.

9. Martsinkowsky V., Gaft J., Gawlinsky M. Contemporary Tendencies of the Gland Packings Improvement. Seals
and Sealing Technology in Machines and Dewices: proc. VIII-th Intern. Conf. — Wroclaw — Polanica Zdroy, 1998.

P. 15-165.

10. Kazeminia M., Bouzid A. Analytical and Numerical Evaluation of the Sealing Contact Stress of Different Soft-Packed
Stuffing-Box. ASME-Turbo Expo Conf., Vol. 3B: Diisseldorf, Germany, Wind Energy-2004. P. 16-20.

11. Marzinkovski W., Gaft J., Schewtschenko S. Konstruktionen und Berechnung der Dichtungen mit Schwimmrin-
gen // Untersuchung und Anwendung von Dichtelementen: XII Intern. Dichtungskolloquium. 09-10.05.2001.
Essen, Vulkan-Verlag, 2001. P. 147-155.

UDC 519.85

CONSTRUCTION

OF BOTH GEOMETRIC

RELATIONSHIPS
OF ELLIPSES AND

PARABOLA-BOUNDED

REGIONS

IN GEOMETRIC
PLACEMENT
PROBLEMS

Mykola 1. Hil
GilMI@i.ua
ORCID: 0000-0003-0381-0925

Volodymyr M. Patsuk
vmpatsuk @ gmail.com
ORCID: 0000-0003-3350-4515

A. Podgorny Institute

of Mechanical Engineering
Problems of NASU

2/10, Pozharskyi St., Kharkiv,
61046, Ukraine

Introduction

DOI: https://doi.org/10.15407/pmach2020.02.052

Currently, there is a significant growth of interest in the practical problems of
mathematically modeling the placement of geometric objects of various physical
natures in given areas. When solving such problems, there is a need to build
their mathematical models, which are implemented through the construction of
analytical conditions for the relations of the objects being placed and placement
regions. The problem of constructing conditions for the mutual non-intersection
of arbitrarily oriented objects whose boundaries are formed by second-order
curves is widely used in practice and, at the same time, much less studied than a
similar problem for simpler objects. A fruitful and worked out method of repre-
senting such conditions is the construction of Stoyan’s ®-functions (further re-
ferred to as phi-functions) and quasi-phi-functions. In this article, considered as
geometric objects are an ellipse and a parabola-bounded region. The boundaries
of the objects under study allow both implicit and parametric representations.
The proposed approach to modeling the geometric relationships of ellipses and
parabola-bounded regions is based on coordinate transformation, reduction of
an ellipse equation to a circle equation with the use of a canonical transforma-
tion. In particular, constructed are the conditions for the inclusion of an ellipse
in a parabola-bounded region, as well as the conditions for their mutual non-
intersection. The conditions for the relationships between the geometric objects
under study are constructed on the basis of the canonical equations of the ellipse
and parabola, taking into account their placement parameters, including rota-
tions. These conditions are presented in the form of a system of inequalities, as
well as in the form of a single analytical expression. The presented conditions
can be used in constructing adequate mathematical models of optimization prob-
lems of placing corresponding geometric objects for an analytical description of
feasible regions. These models can be used further in the formulation of mathe-
matical models of packing and cutting problems, expanding the range of objects
and / or increasing solution accuracy and decreasing time to solution.

Keywords: ellipse, parabola, non-intersection, inclusion, phi-function.

The most important part of solving problems associated with the modeling of the placement of geomet-
ric objects in given regions is the construction of adequate mathematical models of corresponding optimization
problems. The main component of such mathematical models is an analytical representation of the conditions
for the interaction of the geometric objects being placed and placement regions, including the conditions of mu-
tual non-intersection of geometric objects, as well as the conditions of their inclusion in the placement region.
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