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Currently, there is a significant growth of interest in the practical problems of
mathematically modeling the placement of geometric objects of various physical
natures in given areas. When solving such problems, there is a need to build
their mathematical models, which are implemented through the construction of
analytical conditions for the relations of the objects being placed and placement
regions. The problem of constructing conditions for the mutual non-intersection
of arbitrarily oriented objects whose boundaries are formed by second-order
curves is widely used in practice and, at the same time, much less studied than a
similar problem for simpler objects. A fruitful and worked out method of repre-
senting such conditions is the construction of Stoyan’s ®-functions (further re-
ferred to as phi-functions) and quasi-phi-functions. In this article, considered as
geometric objects are an ellipse and a parabola-bounded region. The boundaries
of the objects under study allow both implicit and parametric representations.
The proposed approach to modeling the geometric relationships of ellipses and
parabola-bounded regions is based on coordinate transformation, reduction of
an ellipse equation to a circle equation with the use of a canonical transforma-
tion. In particular, constructed are the conditions for the inclusion of an ellipse
in a parabola-bounded region, as well as the conditions for their mutual non-
intersection. The conditions for the relationships between the geometric objects
under study are constructed on the basis of the canonical equations of the ellipse
and parabola, taking into account their placement parameters, including rota-
tions. These conditions are presented in the form of a system of inequalities, as
well as in the form of a single analytical expression. The presented conditions
can be used in constructing adequate mathematical models of optimization prob-
lems of placing corresponding geometric objects for an analytical description of
feasible regions. These models can be used further in the formulation of mathe-
matical models of packing and cutting problems, expanding the range of objects
and / or increasing solution accuracy and decreasing time to solution.

Keywords: ellipse, parabola, non-intersection, inclusion, phi-function.

The most important part of solving problems associated with the modeling of the placement of geomet-
ric objects in given regions is the construction of adequate mathematical models of corresponding optimization
problems. The main component of such mathematical models is an analytical representation of the conditions
for the interaction of the geometric objects being placed and placement regions, including the conditions of mu-
tual non-intersection of geometric objects, as well as the conditions of their inclusion in the placement region.
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For most of the classes of two-dimensional geometric objects, including circles, polygons, and objects obtained
by their combination on the basis of unions and intersections, such conditions are realized on the basis of phi-
functions [1] and quasi-phi-functions [2]. In the two-dimensional case, phi-functions are constructed for objects
whose boundaries consist of segments of straight lines as well as convex and concave arcs of circles [3].

At the same time, the construction of the conditions of mutual non-intersection and inclusion for ob-
jects whose boundaries are described by other types of curves is much more complicated, and there are fewer
results in the area. So, in [4], for the optimal packing of ellipses, an approach using quasi-phi-functions is used.
In [5], E. Birgin et al. successfully apply a special transformation of space for packing optimization problems
involving ellipses, simplifying these problems. In [6-8], the authors apply the approximation of ellipses by a set
of circles constructed in a certain way. A common method is also the approximation of object boundaries with
2D broken lines and 3D polyhedral surfaces. Due to the complexity of constructing phi-functions for the above
mentioned objects, quasi-phi-functions were proposed, which helped solve a number of problems, in particular,
for ellipses and ellipsoids [6, 9, 10].

In this article, considered as geometric objects are ellipses and a parabola-bounded region.

Conditions for the Inclusion of an Ellipse in a Parabola-bounded Region
In the following presentation, we will identify such concepts: an ellipse as a curve line and an ellipse
as a region bounded by this curve.

Let, with respect to some coordinate system Xoy , there be a region D{iz;,d,} bounded by a parabola
S,{it;,®,} and an ellipse S, {it,,,}, where &, = {X,,5,} and ©,, i=1,2 are the placement parameters of an ob-
ject S, (the position of the origin and angle of rotation of its own coordinate system associated with the object
S, relative to the coordinate system xoy ). In their own coordinate systems xoy and X'OY', both the parabola
and the ellipse are given by the equations y = px* (p>0)and B*X"+A’Y?~A’B* =0 (A > B), respectively.
Note that S,{i,,d,} is the inclusion in the region D{ig;,®;} if S,{it,,d,} N\ D,{iK,,S,} = S,{it,,D,}.

We choose the xoy coordinate system as the main one, relative to which we have the region
D{u,,%,} and the ellipse S,{u,,9,}, where u, =(0,0), &, =0, u, =(x,,5,), &, = (52 —51). Here,

xo=()_cz—)_cl)cosl_31—(y2—yl)sin§, 0
Yo = (X, —X,)sin % + (y, — y,) cos ;.

We introduce a new coordinate system x'oy' rotated through an angle of ¥, relative to xoy . Taking into
account the transformation formulas in this coordinate system, the parabola and ellipse equations have the forms
x'sin®, + y'cos®, = p[x'cosV, — y'sin®,]* and B*(x'-x,)> +A*(y'-y,)’ — A’B> =0, respectively, where

x'y=x,cos®, + y,sinY,,
V' =—%X,sinY, + y,cosV,,
Xy, Y, are determined from (1).

We carry out compression in the direction of the ox' axis in accordance with the transformation formu-

las x'= %Y , y'=Y . Then in the new coordinate system XOY the parabola is described by the equation

%Ysinﬁz +Y cos®, = p[%)?cosﬁz —Ysin®,]*,
and the ellipse turns into a circle whose equation has the form
(X -X)*+( -Y,)* =B* =0,

where X, = %[x0 cos®, + y,sind,)], ¥, = —x,sin ¥, + y, cos D, .

We write the parabola equation as
a;, X +2a, XY +a,,Y > +2a,,X +2a,Y +az; =0, 2)

ISSN 0131-2928. Ilpobaemu mawunobyoysanns. 2020. T. 23. Ne 2 53



APPLIED MATHEMATICS

where
a, = A2 cos>V,, ay = pB? sin’®,, a,, =—pABsin®, cosV,,
1 . [, &
a; = —EABsmﬂz, Ayy = —EB cosD,, a3 =0.

It is known [11] that the equation of form (2) (if we introduce a new coordinate system XOY by ro-

tating through an angle of ¢ that satisfies the equation tg2¢ = &) is reduced to the canonical parabola
) —day

equation X = L,Yz, where p’ =l1/—é s J=a,+a,, A= detla,.jJ, i,j=123 (a;=ay).
With account taken of (3), after simple transformations
. AB?
2p(A% cos®®, + B sin29,)"” '

p 4

Thus, in the XOY coordinate system, we have the region 5{0,0,0} bounded by the parabola

X =

21 ~Y? and the circle S{X,,Y,} bounded by the circumference (X —X,)* + (¥ —Y,)* —B> =0, where
p

X, = %(x0 cosD, + y, sind,) cos 2Q + (x, sin¥, — y, cos V¥, ) sin 2@,
Y, = —% (xycos B, + y,sind,)sin 2Q + (x, sin ¥, — y, cos ¥, ) cos 20, (5)

ABsint, cost,
A% cos®®, + B sin’ 0,

2 2.
A% cos®®, — B”sin* 0,

2 2. .
A’ cos®®, + B’ sin* 0,

sin2@Q =-2 , COS2Q=

Then the conditions for the inclusion of the ellipse Sz{l/_tz,l_%} in the region D{i;,d,} are reduced to
the conditions for the inclusion of the circle S{X 0-Y,} in the region D{0,0,0} . We denote by S” the circle of
radius YB with the center at the point (X, X,) . It can be argued that the circle S{X 0- Yo} 1s the inclusion in
the region D{0,0,0} if there is a point (X ,Y") satisfying the conditions:

a) the point (X*,Y") is not an internal point of the circle S{X,Y};

b) the center of the circle (X,,Y,) is inside the region D {0,0,0};

¢) the point (X*,Y") is in the positive half-plane bounded by a straight line X —X =0, where X is

Y? and the circle of radius B with center at the

the abscissa of the point of contact of the parabola X =

’

2p
point (YO,O) ;

Y? and the circle S

d) the point (X*,Y") belongs to the parabola X = 21
p

’

! Y? and the circle S” at the point

e) the angular coefficients of the tangents to the parabola X = >
p

(X7",Y") are equal.

The value X is determined from the system of equations
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1
2p

(X -X,)*+Y*-B*=0,

PY+Y(X-X,) =0,

X Y? =0,

which implement the conditions for the point § {)?0,0} to belong to the circle (X,Y) and parabola

X = %Yz , as well as the equality of the angular coefficients of the tangents to the circle and parabola at the
p

point (X,Y). The solution to this system is X = 21 (B*=p?), Y =%B* - p” , provided p’<B (the ra-
p

dius of curvature of the parabola at the point (0,0) is less than the radius of the circle). Otherwise, X=Y=0.
Condition e) in this case is represented as

* ’ E3 * 1 ES
O(X, Y, Y)=p' (Y =Y)+Y (2_p’Y >~ X,)=0. (6)

Thus, the conditions for the inclusion of the circle S {X,,Y,} in the region D {0,0,0} are reduced to
the fulfillment of the system of inequalities

fz(XO,XO,Y*)E(z;,Y*Z—X0)2+(Y*—Y0)2—B220,
1
ﬁ(Xo’Xo)EXO_z ,YOZZO’
* 1 *) frmgn
h(Y)s2 Y2 -X >0,

where p’ is determined from (4); X, ¥, are determined from (5), Y " is one of the solutions to equation (6).
The conditions for the inclusion of the circle S (Xy,Y,) in the region D {0,0,0} can be considered as

conditions for the non-intersection of the objects R*\intD {0,0,0} and S (X,,Y,) , 1.e., presented in the form
of a phi-function
D(X, Yy, Y ) =max min {£,(X,,,,Y"), £;(X,Y,), (Y )},

Y.
i

where Y, i=12,.. are the roots of equation (6), Yi*e[\/Bz— 'z,w/2p'XoJ, it Y,20,
Y,.*e[—,/zp'x ,—w/Bz—p’z]if Y, <0.

Non-intersection Conditions for an Ellipse and a Parabola-bounded Region
Let in the coordinate system xoy there be a region D{i;,d;} bounded by a parabola S,{it;,d;} and

an ellipse 52{172,52} , which in their own coordinate systems xoy and X'OY' are described by the equations
y—px*=0 (p>0)and B*X"?+A*Y"*-A’B*>=0 (A> B).
We will further understand the non-intersection of objects Y,,Y, e R*> as the non-intersection of

their interiors int Y, (int Y, =& and allow touching, i.e., the intersection of boundaries.
If we choose the xoy coordinate system as the main one, then relative to it we have the region

D{u,, 9, }and the ellipse S,{u,,d,}, where u, =(0,0), &, =0, u, = (x,,y,), O, =9, -9, . Here,
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Xy =(x, —x;)cos ¥ — (¥, — y,)sin ¥,

Yo = (X, —x,)sin Y, +(y, — y,)cos V. @
With the transformation formulas
X'=(x-x5)cosV, +(y—y,)sind,,
Y'=—(x—x,)sin®, +(y—y,)cosd,
the ellipse equation S,{x,,y,,%,} inthe xoy coordinate system takes the form
B*[(x—Xx,)cos D, +(y — y,)sin 9, ]* + @)

Az[—(x—xo)sin B, +(y— yo)cosﬁz]2 —A’B*=0.
Let (x*,y*) be some point of the parabola y— px”* =0. The equation of the tangent to the parabola
at the point (x*, y*) has the form
F(x,y)=2px*x—y—px* =0. ©))
We denote by (x, .y, ), i=12, the corresponding points of ellipse (8) at which the tangents are par-
allel to tangent (9) at the point (x*,y*). The angular coefficient of the tangent to ellipse (8) at the point
(x,.¥,) 1s
R(x, = x))+L(y, = ¥p)
L0, =x)+ S, =Yy

where
R = B? cos? o, + A?sin? Y,
S =B*sin* 9, + A’ cos’ 0, (10
L=(B*-A%)sin®,cosD,.
To determine the coordinates x,, y, we use two conditions:
a) the point (xq, yq) is an ellipse point, i.e., it satisfies equation (8);
b) the angular coefficients of the tangents to the parabola and to the ellipse at the corresponding
points (x*,y*) and (x,,y,) are equal.
Condition b) in this case takes the form
2px TL(x, = %) +S(y, = yo)l+ R(x, = x,) + L(y, = yy) =0,
where x, y, are derived from (7).
Thus, we have a system of two equations
B*[(x, — xy)cosD, +(y, — yp)sin0,]* +
A?[—(x, — X)sin D, +(y, — yp)cos D, > —A’B* =0,
2px [L(x, = X)) + S (v, = yo)l+ R(x, = x)) + L(y, — y,) =0.
The solution to this system is the vector with the values of required coordinates
- AB ,
? \/Bz(cosﬁ2 +Dsin®,)* + A*(Dcos®, —sin®d,)’

qu

- DAB
0— s
VB (cos®, + Dsin®,)” + A>(Dcos ®, —sind,)*

y‘ll,z -
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2pLx*+R
2pSx*+L°
It can be argued that if:

— the points (qu Y, ) and (xq2 , yqz) have non-negative deviations relative to tangent (9);

where D =— L, R, S are derived from (10).

— the point (x,,y,) has a positive deviation relative to tangent (9),
then the ellipse S,{u,,8,} and the region D{u,,%,} (and, therefore, Sz{ﬁz,l_%} and D{i;,,}) do not intersect.
In the analytical representation, these conditions are expressed as a system of inequalities
* %2
2px x, =y, —px 20,
* %2
2px x,, =y, —px 20,

* %2
2px xg—y,—px >0,

where (x,,y,) have the form (7).
Thus, the conditions for the non-intersection of the ellipse 52{172,52} and the region D{i;,d,}

bounded by the parabola Sl{b_tl,l_%} can be represented in an analytical form as follows:

. * %2 * %2 * %2
max min {2px x, =y, —px , 2pxx, —y, —px , 2pxx,—y,—px }20,

x*

where (x,,y,) are derived from (7).
The conditions for the mutual non-intersection of ellipses

Let ellipses Si{b7i,1_3i}, i=1,2, whose boundaries in their own coordinate systems xoy and X'OY'
are described by the equations b*x* +a’y* —a’h> =0 and B*X"?+A’Y*—~A’B* =0, respectively, be given
in some coordinate system xoy . In the coordinate system xoy, chosen as the main one, we have ellipses
SA{u;,9;}, i=L2, where u, =(0,0), 9,=0, u, =(x,,y,). O, =§2 —51 . The equations of the ellipses
5,{0,0,0} and S,{x,,,.0,} have the form b°x* +a’y*> —a’h* =0 and (8), respectively.

Let (x*,y*) be an arbitrary ellipse point §,{0,0,0} .

The equation of the tangent to the ellipse §,{0,0,0} at the point (x*, y*), taking into account the fact
that x=acos@, y=>bsin@, is represented as

F(x,y,0*)=bcos@*-x+asin@*-y—ab=0. (11
Denote by (x,,y,), i=12, the points of the ellipse S,{x,,y,,9,} whose tangents are parallel to
tangent (11) at the point (x*, y*). To determine the coordinates (xq, yq) , as in the previous case, we have a
system of two equations
B*[(x, — xy)cos D, +(y, — yo)sinD, | +
A?[~(x, — x,)sin®, +(y, — yp)cos B, ]* —A’B* =0,
(Rasin @*—Lbcos @*)(x, — xy) +(Lasin @*—Sbcos ¢*)(y, — y,) =0,
where the second equation of the system fulfills the equality of the angular coefficients of the tangent to the
ellipse §,{0,0,0} at the point (x*, y*) and the tangent to the ellipse S,{x,.y,,9,} at the point (xq, yq) . Here,
(xy,y,) are derived from (7), and R,S, L are derived from (10).

The solution to this system is the vector with the values of required coordinates
AB

=x,t — — ,
? \/Bz(cosﬁ2 +Dsin®,)> + A*(D cos®, —sin®,)*

'xéh
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- DAB
0— — p— ’
\/BZ(COS 9, + D sin®d,)* + A*(D cos ¥, —sin ®,)*

y‘[l.z -

Lbcos@*—Racos@*

Lasin @*—Shcos@*

It is easy to verify that if the conditions:

— the points (qu Y, ) and (xq2 , yqz) have non-negative deviations relative to tangent (11);

where D =

— the points (0,0) and (x,,y,) are located on the opposite sides of tangent (11),
are met, then the ellipses $,{0,0,0} and S,{x,,y,.9,} (and, therefore, S,{#;,d} and S,{it,,9,}) do not
intersect. In analytical form, these conditions represent a system of inequalities
bcos@*-x, +asin@*-y, —ab=0,
beos@*-x, +asin@*-y, —ab=0,
bcos@*-x,+asinQ*-y, —ab >0,

where (x,,y,) are determined from (7).
Thus, the conditions for the non-intersection of the ellipses S,{Xx;, yi,?%i }, i=1,2, can be represented as

max min {bcos@*-x, +asin@*-y, —ab, bcosQ*-x, +asin@*-y, —ab,
(p*
bcos@*-xy+asin@*-y, —ab}20.

Conclusions

Conditions for the mutual non-intersection and inclusion for geometric objects with boundaries de-
fined by the equations of second-order curves, in particular, an ellipse and a parabola, are constructed. Such
curves describe a rather large class of practical problems.

The obtained inclusion and mutual non-intersection conditions in the form of systems of inequalities
can be used in constructing adequate mathematical models of optimization problems of placing the corre-
sponding geometric objects for an analytical description of feasible regions.
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IToOynoBa reoMeTpHYHHUX CHIBBITHOLIECHB €JIICIB Ta 00J1acTell, 00MexkeHHX MapadoJIolo,
B 3a/1a4ax Po3MillleHHsI TeOMeTPHYHHUX 00'€KTIB

M. L. T'inb, B. M. ITanyk

Iacturyt npobiem MammHoOyyBanHs iM. A. M. Ilinropaoro HAH Ykpainu,
61046, Ykpaina, M. Xapkis, By:1. [Toxxapcekoro, 2/10

Ha yeii uac 3nauno 3pocmae inmepec 00 npakmuyHux 3a0ay MamemMamuiHo20 MOOETOBANHSL POMIUEHHS 2eoMen-
puunux 06'ekmie piznoi Qizuunoi npupodu 6 3adanux oonacmsx. I1io wac po3s’szanns makux 3a0a4 UHUKAE HeOOXIOHICMb 6
noOY008i iXHIX MamemamuyHux mMooenel, Kl peanizylomucsa yepe3 nooyoo8y aHAIMU4YHUX YMO8 GIOHOUEHb PO3MILLYBAHUX
00'exmis i oonacmeil poaminyents. 3a0aua nodyoo8uU YMO8 83AEMHO20 Henepemuny 008LIbHO OPIEHMOBANHUX 00'€KMig, Medici
SKUX YMBOPEHT KPUBUMU OPY2020 NOPSIOKY, MAE WUPOKe 3aCMOCYBANHS HA NPAKMUYI | B0OHOYAC OOCTIONCEHA 3HAUHO MeHUe,
HIDIC ananoeiuna 3a0aya o 6iibuL npocmux 00 'exmis. IInionum i 6iONPaybOBAHUM MEMOOOM ONUCY MAKUX VMO8 € NoOY006a
D-ynxyini i keazi-D-yuxyii. Y oaniti cmammi sk eeomempuyni 06'ekmu po3ensi0armscst enine i 06aacmos, 006MedceHa na-
pabonoio. Medici 06'ckmis, wjo po3enadaiomcs, OORYCKalomy 5K HesigHe, MAK i napamempuine 300padicenis. 3anpononosa-
HULl RIOXIO 00 MOOENOBAHHSL 2eOMEMPUYHUX GIOHOWEHb eNINCi8 I obnacmeti, 0OMedNCeHUX napaboramu, IPYHMYEMbCs Ha Ne-
PemBOpenHi KOOPOUHAm, NPUBeOeHHi PIGHAHHS elinca 00 PIBHAHHS KOAA 3 6UKOPUCIAHHAM KAHOHIYHO20 NepemsopenHs. 30-
Kpema, nooyooeani ymMoeu 6KI0UeH sl elinca 8 061acmb, 00MednceHy napadonoio, a MaKoldc YMogU ix 63a€MHO20 Henepemu-
ny. Ilobyoosa ymos 63acmogioHoueHb 00'€kmis, wjo po32nadaromvcs, 30iCHeHa HA OCHOBI KAHOHIYHUX PIBHSHbL eninca i na-
pabonu 3 ypaxyeauHsm ix napamempis poamiujenis, eKuoyaiodu obepmanns. Lli ymoeu 300padiceni y euensioi cucmemu Hepi-
BHOCMEU, A MAKONC Y BUTA0T EOUHO20 AHATTMUYHO20 8UPA3Y. 300pasiceHi yMoeu MOAICYMb OYmu GUKOPUCTHAHT Ni0 Yac nooy-
008U AOEKBAMHUX MAMEMAMUYHUX MOOeNel ONMUMIBAYILIHUX 30044 PO3MIWEHHS BIONOBIOHUX 2eOMEMPUYHUX 00'€KMIg 0TSl
AHAIMUYHO20 onucy obracmeti OONYCMUMUX po36’si3Kie. Lli MoOeni Moxcymy 6UKOPUCIOBYBAMUCS Oalli 8 (hOPMYII08AHHI
MAMEMAMUYHUX MoOerell NPaKmudHux 3a0a4 YNAKOSKU mMa PO3KPOI0, POUUPIOIOYU KOLo 00'€kmie ma/abo niosuwyiouu
TMOYHICMb T 3HUICYIOUU YAC OMPUMAHHS PO36 A3AHHS.

Knrouosi cnosa: eninc, napabona, nenepemut, exouetts, O-gynxyis.
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This paper is devoted to solving optimization problems of packing 3D objects both by
constructing exact mathematical models and by developing approaches based on the
application of non-linear optimization methods and modern solvers. Developed are con-
structive tools for both mathematical and computer modeling of relations between ori-
ented and non-oriented 3D objects, whose boundaries are formed by cylindrical, coni-
cal, and spherical surfaces and planes in the form of new classes of both Stoyan’s ®-
function (further referred to as phi-functions) and quasi-phi-functions. Based on the de-
veloped mathematical modeling tools, constructed and investigated is the basic mathe-
matical model of the problem of optimally packing 3D objects, whose boundaries are
formed by cylindrical, conical, and spherical surfaces and planes, as well as the model’s
various implementations, which cover a wide class of scientific and applied problems of
packing 3D objects. Developed is the methodology for solving the problems of packing
3D objects that allow both continuous rotations and translations at the same time. Pro-
posed are strategies, methods and algorithms for solving the optimization problems of
packing 3D objects with taking into account technological constraints (minimum admis-
sible distances, prohibited zones, the possibility of continuous translations and rota-
tions). On the basis of the proposed mathematical modeling tools, mathematical models,
methods, and algorithms, developed is the software that uses parallel computing tech-
nology to automatically solve the optimization problems of packing 3D objects. The re-
sults obtained can be used for solving problems of optimizing layout solutions; for com-
puter modeling in materials science, powder metallurgy, and nanotechnologies; in opti-
mizing the 3D printing process for the SLS technology of additive production; in infor-
mation and logistics systems that optimize transportation and storage of goods.

Keywords: packing, 3D objects, geometric design, phi-functions, mathematical
modeling, continuous rotations, nonlinear optimization.

Today, in many fields of science and technology, among the problems that have been intensely
solved in recent decades, we can distinguish the computer modeling problems of the optimal placement of
3D objects of different nature. These problems are becoming highly demanded because the replacement of in
situ experiments with computer modelling can significantly save both material resources and time. There-
fore, it requires the development of models, methods, and algorithms to solve relevant problems.

Possible areas of the practical application of the problems of optimal packing of 3D objects can be
conditionally classified as follows: problems of optimization of layout solutions; 3D modeling in materials
science, powder metallurgy and nanotechnologies; optimization of the 3D printing process for the SLS addi-
tive manufacturing technology; information-logistic systems that provide the optimization of transportation

and storage of cargos.
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