УДК 621.165:532.6

ПІДВИЩЕННЯ ГАЗОДИНАМІЧНОЇ ЕФЕКТИВНОСТІ РЕГУЛЮЮЧОГО ВІДСІКУ ПАРОВИХ ТУРБІН СЕРІЇ К-300

¹ А. В. Русанов, член-кор. НАН України <u>rusanov@ipmach.kharkov.ua</u> ORCID: 0000-0002-9957-8974

²В. Л. Швецов, канд. техн. наук shvetsov@turboatom.com.ua ORCID: 0000-0002-2384-1780

¹ А. І. Косьянова kosianova.anna@gmail.com ORCID: 0000-0001-6944-0299

¹ Ю. А. Биков, канд. техн. наук bykow@ipmach.kharkov.ua ORCID: 0000-0001-7089-8993

¹**H. В. Пащенко**, канд. техн. наук pashchenko@ipmach.kharkov.ua ORCID: 0000-0002-3936-7331

¹ М. О. Чугай, канд. техн. наук <u>mchugay@ipmach.kharkov.ua</u> ORCID: 0000-0002-0696-4527

¹ Р. А. Русанов, д-р філос. <u>roman_rusanov@ipmach.kharkov.ua</u> ORCID: 0000-0003-2930-2574

¹ Інститут проблем машинобудування ім. А. М. Підгорного НАН України, 61046, Україна, м. Харків, вул. Пожарського, 2/10

² Акціонерне товариство «Турбоатом», 61037, Україна, м. Харків, пр. Московський, 199

АЕРОГІДРОДИНАМІКА ТА ТЕПЛОМАСООБМІН

В роботі запропоновано напрями підвищення ефективності соплового регулювання для парових енергетичних турбін серії К-300, які разом з турбінами серії К-200 складають основу теплової енергетики України. Як об'єкт дослідження розглянуто регулюючий відсік циліндра високого тиску парової турбіни К-325-23,5. Чисельні розрахунки та проектування регулюючого відсіку парової турбіни виконувалися за допомогою розробленої в ШМаш НАН України комплексної методології, яка включає методи різних рівнів складності від одновимірних до моделей розрахунку просторових в'язких течій, а також аналітичних методів опису просторових геометрій проточних частин на основі обмеженої кількості параметризованих величин. Комплексна методологія проектування реалізована в програмному комплексі IPMFlow, який є розвитком програмних комплексів FlowER і FlowER-U. Модель в'язкої турбулентної течії ґрунтується на чисельному інтегруванні осередненої системи рівнянь Нав'є-Стокса, для замикання яких використовується двочленне рівняння стану Таммана. Врахування турбулентних явищ здійснювалося за допомогою двопараметричної диференціальної моделі турбулентності SST Ментера. Дослідження проводилися для шести режимів роботи в розрахунковій області, що складалася з понад 3 млн. комірок (елементарних об'ємів) з урахуванням міждискових і діафрагмових перетікань. За результатами чисельних досліджень вихідного регулюючого відсіку парової турбіни К-325-23,5 показано, що у проточній частині через великі втрати кінетичної енергії у камері вирівнювання, а також завишене навантаження на перший ступінь ККД є достатньо низьким на всіх режимах експлуатаиї, у тому числі на номінальному (режим 100 % потужності). На основі проведеного аналізу газодинамічних процесів сформовано напрями й виконано модернізацію проточної частини регулюючого відсіку. В новій проточній частині, на відміну від вихідної, спостерігається сприятлива картина течії на всіх режимах роботи, що забезпечує її високу газодинамічну ефективність. В залежності від режиму, коловий ККД регулюючого відсіку збільшився на 4,9-7,3%, а потужність – на 1–2 МВт. На номінальному режимі (режим 100%) коловий ККД нового регулюючого відсіку з урахуванням міждискових і надбандажних перетікань становить 91%.

Ключові слова: парова турбіна, регулюючий ступінь, просторова течія, чисельне моделювання, газодинамічна ефективність.

Вступ

На сьогодні в Україні велику частку в балансі електрогенерації складають теплові електростанції (близько 30%), з них більшість це енергоблоки потужністю 200 та 300 МВт. Обов'язковою умовою надійного функціонування об'єднаної енергетичної системи є наявність необхідних обсягів маневрених та регулюючих потужностей. Через недостатню кількість ГЕС та ГАЕС й повну відсутність енергоблоків на основі газових турбін в Україні для підтримки балансу між генерацією та споживанням електричної енергії переважно використовуються саме енергоблоки теплових електростанцій. У зв'язку з загальною світовою тенденцію, спрямованою на збільшення частки відновлювальної енергетики та розвиток розподіленої

Статтю ліцензовано на умовах Ліцензії Creative Commons «Attribution» («Атрибуція») 4.0 Міжнародна. © А. В. Русанов, В. Л. Швецов, А. І. Косьянова, Ю. А. Биков, Н. В. Пащенко, М. О. Чугай, Р. А. Русанов, 2020

генерації, зростуть потреби в необхідних обсягах регулюючих потужностей. Крім регулюючих, з'явиться потреба у резервних потужностях. Для умов України основні потреби в регулюючих та резервних потужностях, як і сьогодні, будуть задовольнятися за рахунок енергоблоків теплових електростанцій.

Більша частина існуючих в Україні енергоблоків теплових електростанцій виробили встановлений й подовжений ресурси, вони потребують заміни на нові або докорінної реконструкції, насамперед це енергоблоки потужністю 200 та 300 МВт. На сьогодні у світі, поряд з традиційними вимогами до парових турбін теплових енергоблоків – ефективність та надійність – актуальною потребою є необхідність підвищення їх маневреності, у тому числі на режимах експлуатації зі зменшеною потужністю.

Світовими лідерами у розробці та виробництві парових турбін є такі фірми: Siemens-energy [1], General-Electric [2], Mitsubishi Power [3], АТ «Турбоатом» [4] та ін. У більшості систем соплового регулювання потужних парових турбін використовується схема, у якій регулюючий (перший) ступінь знаходиться на середньому діаметрі, набагато більшому у порівнянні з наступним (другим) ступенем циліндрів високого тиску (ЦВТ). Між першим та другим ступенями знаходиться радіальна камера вирівнювання тиску. Попередні дослідження подібної схеми регулюючого відсіку на прикладі парової турбіни К-325-23,5 показали, що у ній через великі втрати кінетичної енергії у камері вирівнювання, а також завищене навантаження на перший ступінь ККД є достатньо низьким на всіх режимах експлуатації, у тому числі на номінальному (режим 100% потужності) [5, 6]. На сьогодні провідні виробники парових турбін поступово відмовляються від використання у регулюючих відсіках з сопловим регулюванням радіальних камер вирівнювання тиску, але з існуючих відкритих джерел важко зрозуміти, наскільки це впливає на газодинамічну ефективність проточної частини. Також існують пропозиції щодо зміни принципів соплового регулювання, зокрема, в роботах [7, 8] запропоновано радіальне парціальне підведення пари. Такий підхід має низку переваг у порівнянні з традиційним коловим парціальним підведенням пари, насамперед тому, що в ньому забезпечується відсутність значної колової нерівномірності газодинамічних параметрів [9]. На жаль, на сьогодні практичне використання цього підходу поки що не здійснюється через необхідність вирішення низки конструктивних та технологічних проблем.

В роботі наведено результати чисельного дослідження нової проточної частини регулюючого відсіку ЦВТ парової турбіни серії К-300 діагонального типу, в якій відсутня радіальна камера вирівнювання тиску. Замість радіальної камери вирівнювання, з метою розвантаження першого ступеня, в регулюючий відсік встановлено додатковий ступінь. Показано вплив запропонованих заходів на структуру течії і ефективність проточної частини на різних режимах роботи турбіни.

Методика розрахунків та проектування проточних частин турбомашин

Чисельні розрахунки та проектування регулюючого відсіку парової турбіни виконувалися за допомогою розробленої в ШМаш НАН України комплексної методології, яка включає методи різних рівнів складності – від одновимірних до моделей розрахунку просторових в'язких течій, а також аналітичних методів опису просторових геометрій проточних частин на основі обмеженої кількості параметризованих величин [10]. Комплексна методологія проектування реалізована в програмному комплексі *IPMFlow*, який є розвитком програмних комплексів *FlowER* і *FlowER*–U.

Модель в'язкої турбулентної течії, грунтується на чисельному інтегруванні осередненої системи рівнянь Нав'є–Стокса [11–15], для замикання яких використовується двочленне рівняння стану Таммана [16, 17]. Врахування турбулентних явищ здійснювалося за допомогою двопараметричної диференціальної моделі турбулентності SST Ментера [18, 19].

Постановка задачі, об'єкт дослідження, аналіз вихідної конструкції

Як об'єкт дослідження розглянуто регулюючий відсік ЦВТ парової турбіни К-325-23,5 (рис. 1), що складається з регулюючого ступеня (РС), камери вирівнювання і першого ступеня тиску (другий ступінь).

Розрахункова область складалась приблизно з 3 млн. комірок (елементарних об'ємів).

Дослідження проводилися для шести режимів роботи з граничними умовами, наведеними в табл. 1.

У розрахунках враховано міждискові і діафрагмові перетікання, схему яких показано на рис. 1, а величини – в табл. 2.

АЕРОГІДРОДИНАМІКА ТА ТЕПЛОМАСООБМІН

Рис. 1. Меридіональний переріз ЦВТ парової турбіни К-325-23,5 (фрагмент): НА – направляючий апарат; РК – робоче колесо; G_{KY}, G_{PK1}, G_{HA1}, G_{PK2}, G^{*}_{PK2}, G^{**}_{PK2} – величини перетікань (витрата)

Таблиця 1. Граничні умови для розрахунків регулюючого відсіку ЦВТ										
Режим, %										
100	90	80	70	60	50					
22,73	22,53	21,40	22,00	19,40	16,10					
808,5	808,5	808,5	808,5	808,5	808,5					
16,58	14,95	13,14	11,63	9,97	8,31					
277,8	250,0	222,2	194,4	166,7	138,9					
	иови для ро 100 22,73 808,5 16,58 277,8	иови для розрахунків ро 100 90 22,73 22,53 808,5 808,5 16,58 14,95 277,8 250,0	мови для розрахунків регулюючого Режи 100 90 80 22,73 22,53 21,40 808,5 808,5 808,5 16,58 14,95 13,14 277,8 250,0 222,2	мови для розрахунків регулюючого відсіку ЦВ Режим, % 100 90 80 70 22,73 22,53 21,40 22,00 808,5 808,5 808,5 808,5 16,58 14,95 13,14 11,63 277,8 250,0 222,2 194,4	мови для розрахунків регулюючого відсіку ЦВТ Режим, % 100 90 80 70 60 22,73 22,53 21,40 22,00 19,40 808,5 808,5 808,5 808,5 808,5 16,58 14,95 13,14 11,63 9,97 277,8 250,0 222,2 194,4 166,7					

Гаолиця 2. Величини перетікань										
Парамотр	Режим, %									
Параметр	100	90	80	70	60	50				
$G_{ m KY},$ кг/с	3,614	3,180	3,180	2,367	2,169	1,678				
$G_{ m PK1},$ кг/с	4,64	2,90	2,60	—	—	—				
<i>G</i> _{HA1} , кг/с	1,98	1,74	1,58	1,29	1,19	0,91				
$G_{ m PK2},$ кг/с	2,36	2,09	1,74	1,58	1,45	1,12				
$G^{*}_{ m PK2}$, кг/с	3,98	3,51	3,22	2,73	2,50	1,93				
<i>G</i> ^{**} _{PK2} , кг/с	3,76	3,40	3,13	2,64	2,42	1,87				

Результати проведених досліджень показали, що в камері вирівнювання, де пара рухається і в осьовому, і в радіальному напрямках, виникають суттєві завихрення і відриви потоку, причому не тільки на часткових, але і на номінальних режимах роботи (рис. 2). Наявність відривних течій призводить до суттєвих втрат кінетичної енергії і зниження ККД не тільки в регулюючому, але і в наступному за ним ступені (другий ступінь) на всіх режимах роботи. Також сприяє виникненню несприятливої картини обтікання в другому ступені форма лопаток НА, яка не пристосована до нерозрахункових кутів натікання потоку (рис. 2, 3).

AEROHYDRODYNAMICS AND HEAT-MASS TRANSFER

Розробка 3D дизайну нової проточної частини ЦВТ

Основні ідеї, які використовувались під час розробки нової проточної частини, були викладені в роботах [7, 8], вони полягають в такому:

- відмова від камери вирівнювання з горизонтальним напрямком потоку;

 переміщення PC на середній діаметр, розташований максимально близько до середнього діаметра другого ступеня;

- забезпечення мінімально можливого значення ступеня парціальності РС;

– установка на місці камери вирівнювання (в осьовому напрямку) додаткового ступеня, що забезпечує ефективне спрацьовування теплового перепаду.

Новий варіант регулюючого відсіку розроблявся таким чином, щоб він вписувався в габарити вихідного відсіку і були максимально дотримані умови, наведені в табл. 1. В цьому випадку не змінюються умови роботи розташованих за регулюючим відсіком ступенів тиску, що дозволяє зберегти їх конструкцію без змін.

Регулюючий відсік, замість двох ступенів у вихідній проточній частині, виконано з трьома ступенями (рис. 4). На жаль, через технологічні обмеження не вдалось забезпечити однаковий середній діаметр ступенів, що призвело до діагональної форми регулюючого відсіку в меридіональній площині. На рис. 5 показано профілі лопаток (НА і РК) нової проточної частини ЦВТ. Профілі направляючих лопаток 2-го і 3-го ступенів мають товсті вхідні кромки, це зроблено з метою зменшення негативних наслідків, пов'язаних з нерозрахунковими кутами натікання потоку на часткових режимах роботи.

АЕРОГІДРОДИНАМІКА ТА ТЕПЛОМАСООБМІН

Розрахунки нового регулюючого відсіку проводилися для умов, наведених в табл. 1. Подача пари через соплові коробки РС проводилася з різним ступенем парціальності в залежності від режиму: 100% – 0,8 (48/60); 90, 80% – 0,58333 (35/60); 70, 60 і 50% – 0,36666 (22/60). Моделювання виконувалося на розрахунковій сітці з сумарним числом комірок понад 3,2 млн. У розрахунках враховані міждискові та діафрагмові перетікання, схему яких наведено на рис. 6, а величини – в табл. 3.

На рис. 7 показана візуалізація течії в проточній частині на режимі роботи 100%.

З наведеної візуалізації обтікання міжлопаткових каналів видно, що на номінальному режимі спостерігається дуже сприятлива картина течії, в якій відсутні відриви потоку. На інших режимах роботи характер течії дещо інший, у деяких випадках виникають незначні відриви потоку, але в цілому показники ефективності роботи нової проточної частини набагато кращі у порівнянні з вихідною турбіною (табл. 4).

З наведених результатів видно, що запропонований варіант проточної частини має дуже високий рівень газодинамічної ефективності на всіх розглянутих режимах роботи: коловий ККД збільшився на 4,9–7,3%, а потужність – на 1– МВт. На номінальному режимі (режим 1) коловий ККД регулюючого відсіку з урахуванням міждискових і надбандажних перетікань становить 91%.

Парамотр	Режим, %								
Параметр	100	90	80	70	60	50			
<i>G</i> ₁ , кг/с	277,1	250,2	223,6	191,8	168,7	137,8			
<i>G</i> _{КУ1} , кг/с	3,614	3,180	3,180	2,367	2,169	1,678			
<i>G</i> _{РК1} , кг/с	7,216	5,830	5,120	-	_	-			
<i>G</i> ₂ , <i>G</i> ₃ , <i>G</i> ₄ , кг/с	273,5	247,0	220,4	189,4	166,5	136,1			
$G_{ m HA2}$, кг/с	1,81	1,63	1,45	1,27	1,09	0,90			
<i>G</i> _{РК2} , кг/с	3,04	2,75	2,44	2,15	1,83	1,41			
$G_{ m HA3}$, кг/с	2,02	1,82	1,62	1,42	1,21	1,01			
<i>G</i> _{РК3} , кг/с	3,00	2,71	2,41	2,12	1,81	1,51			

Таблиця 3. Величини перетікань в новому регулюючому відсіку

Таблиця 4. Інтегральні характеристики вихідної та нової проточної частини турбіни регулюючого відсіку

	<i>G</i> , <u>кк</u>	Вихід	Вихідний регулюючий відсік			Новий регулюючий відсік						
Режим,		ννп	Потужність, МВт		иип	Потужність, МВт				ΔККД,	ΔN ,	
%	т/год		DC	2-й	Dinoir	ккд, %	DC	2-й	3-й	Dinoir	%	МВт
		10	re	ступінь	ыдстк	70	10	ступінь	ступінь	ыдстк		
100	1001	83,7	13,2	8,48	21,71	91,0	9,1	7,37	7,24	23,7	7,3	2,00
90	894	83,4	17,7	7,49	25,24	88,8	12,7	7,96	6,37	27,0	5,4	1,79
80	798	74,0	17,0	6,56	23,53	81,8	12,6	8,35	5,38	26,3	6,5	1,98
70	701	74,7	21,1	6,00	27,07	80,0	16,7	7,31	4,55	28,6	5,3	1,52
60	614	73,7	19,6	5,36	24,93	79,8	15,3	6,76	4,34	26,3	6,1	1,42
50	501	73,7	16,5	4,43	20,97	78,6	12,8	5,67	3,57	22,0	4,9	1,06

АЕРОГІДРОДИНАМІКА ТА ТЕПЛОМАСООБМІН

Висновки

На основі аналізу газодинамічних процесів в проточній частині регулюючого відсіку ЦВТ парової турбіни К-325-23,5 сформовано напрями вдосконалення й виконано її модернізацію.

В новій проточній частині, на відміну від вихідної, спостерігається сприятлива картина течії на всіх режимах роботи, що забезпечує її високу газодинамічну ефективність. В залежності від режиму коловий ККД регулюючого відсіку збільшився на 4,9–7,3%, а потужність на 1–2 МВт.

Коловий ККД нового регулюючого відсіку з урахуванням міждискових і надбандажних перетікань на номінальному режимі становить 91%.

Література

- 1. Siemens-energy. Офіційний сайт Siemens-energy, 2020. URL: <u>https://www.siemens-energy.com/global/en.html</u>
- 2. General-Electric. Офіційний сайт General Electric, 2020. URL: <u>https://www.ge.com/power</u>
- 3. Mitsubishi Power. Офіційний сайт Mitsubishi Power, 2020. URL: <u>https://power.mhi.com</u>
- 4. Турбоатом. Офіційний сайт АТ Турбоатом, 2020. URL: <u>https://www.turboatom.com.ua</u>
- 5. Русанов А. В., Левченко Е. В., Швецов В. Л., Косьянова А. И. Повышение газодинамической эффективности первых двух ступеней ЦВД турбины К-325-23,5. *Компрессор. и энерг. машиностроение*. 2011. № 1 (23). С. 28–32.
- Русанов А. В., Косьянова А. И., Сухоребрый П. Н., Хорев О. Н. Газодинамическое совершенствование проточной части цилиндра высокого давления паровой турбины К-325-23,5. *Наука и инновации*. 2013. Т. 9. № 1. С. 33–40.
- 7. Русанов А. В., Косьянова А. И., Косьянов Д. Ю. Разработка нового способа парциального парораспределения для обеспечения частичных режимов работы мощных паровых турбин. *Восточно-Европейский журнал передовых технологий*. 2015. Т. 6. № 8 (78). С. 24–28. <u>https://doi.org/10.15587/1729-4061.2015.55527</u>.
- 8. Система соплового паророзподілу парової турбіни: пат. 113710 С2 Україна: МПК F24D 3/18; F24H 4/02; F01K 25/02; заявл. 29.07.2016; опубл. 10.02.2017, Бюл. № 3. 4 с.
- 9. Русанов А. В., Косьянов Д. Ю., Косьянова А. И. Исследование пространственного потока пара в регулирующем отсеке с радиальным парциальным парораспределением. *Авиац.-косм. техника и технология*. 2016. № 7 (134). С. 43–48.
- Rusanov A., Rusanov R., Lampart P. Designing and updating the flow part of axial and radial-axial turbines through mathematical modeling. *Open Eng. (formerly Central European J. Eng.)*. 2015. Vol. 5. P. 399–410. <u>https://doi.org/10.1515/eng-2015-0047</u>.
- 11. Ландау Л. Д., Лифшиц Е. М. Механика сплошных сред. М: Гостехиздат, 1954. 796 с.
- 12. Лойцянский Л. Г. Механика жидкости и газа: учеб. для вузов. 7-е изд. М.: Дрофа, 2003. 840 с.
- 13. Роуч П. Вычислительная гидродинамика. М.: Мир, 1980. 618 с.
- 14. Андерсон Д., Таннехилл Дж., Плетчер Р. Вычислительная гидромеханика и теплообмен. М.: Мир, 1990. 725 с.
- 15. Флетчер К. Вычислительные методы в динамике жидкостей. М.: Мир, 1991. 552 с.
- 16. Годунов С. К., Забродин А. В., Иванов М. Я., Крайко А. Н., Прокопов Г. П. Численное решение многомерных задач газовой динамики. М.: Наука, 1976. 400 с.
- 17. Нащокин В. В. Техническая термодинамика и теплопередача. М.: Высш. шк., 1980. 469 с.
- Menter F. R. Zonal two-equation k-ω turbulence models for aerodynamic flows. AIAA Pap. 1993. No. 93–2906. https://doi.org/10.2514/6.1993-2906.
- Menter F. R. Two-equation eddy viscosity turbulence models for engineering applications. AIAA J. 1994. Vol. 32. No. 8. P. 1598–1605. <u>https://doi.org/10.2514/3.12149</u>.

Надійшла до редакції 02.11.2020

Повышение газодинамической эффективности регулирующего отсека паровой турбины серии К-300

¹ А. В. Русанов, ² В. Л. Швецов, ¹ А. И. Косьянова, ¹ Ю. А. Быков, ¹ Н. В. Пащенко, ¹ М. А. Чугай, ¹ Р. А. Русанов

¹ Институт проблем машиностроения им. А. Н. Подгорного НАН Украины, 61046, Украина, г. Харьков, ул. Пожарского, 2/10

² Акционерное общество «Турбоатом», 61037, Украина, г. Харьков, пр. Московский, 199

В работе предложены методы, направленные на повышение эффективности соплового регулирования для паровых энергетических турбин серии К-300, которые вместе с турбинами серии К-200 составляют основу тепловой энергетики Украины. В качестве объекта исследования рассмотрены регулирующий отсек цилиндра высокого давления паровой турбины К-325-23,5. Численные расчеты и проектирование регулирующего отсека паровой турбины выполнялись с помощью разработанной в ИПМаш НАН Украины комплексной методологии, включающей методы различных уровней сложности – от одномерных к моделям расчета пространственных вязких течений, а также аналитических методов описания пространственных геометрий проточных частей на основе ограниченного количества параметризованных величин. Комплексная методология проектирования реализована в программном комплексе IPMFlow, который является развитием программных комплексов FlowER и FlowER-U. Модель вязкого турбулентного течения основана на численном интегрировании осредненной системы уравнений Навье-Стокса, для замыкания которых используется двучленное уравнение состояния Таммана. Учет турбулентных явлений осуществлялся с помощью двухпараметрической дифференциальной модели турбулентности SST Ментера. Исследования проводились для шести режимов работы в расчетной области, состоящей из более 3 млн. ячеек (элементарных объемов) с учетом междисковых и диафрагменных перетеканий. По результатам многочисленных исследований исходного регулирующего отсека паровой турбины К-325-23,5 показано, что в проточной части из-за больших потерь кинетической энергии в камере выравнивания, а также завышенной загруженности на первой ступени КПД достаточно низкий на всех режимах эксплуатации, в том числе на номинальном (режим 100% мощности). На основе проведенного анализа газодинамических процессов сформированы направления и выполнена модернизация проточной части регулирующего отсека. В новой проточной части, в отличие от исходной, наблюдается благоприятная картина течения на всех режимах работы, обеспечивающая ее высокую газодинамическую эффективность. В зависимости от режима, окружной КПД регулирующего отсека увеличился на 4,9–7,3%, а мощность – на 1–2 МВт. На номинальном режиме (режим 100%) окружной КПД нового регулирующего отсека с учетом междисковых и надбандажних перетеканий составляет 91%.

Ключевые слова: паровая турбина, регулирующая ступень, пространственное течение, численное моделирование, газодинамическая эффективность.