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Introduction

Currently, the computational fluid dynamics (CFD) is an essential tool for turbomachinery flows investi-
gation and turbine and compressor flow paths designing. Nowadays, the most common approach is a numerical
simulation of turbulent viscous compressible flows with the use of the Reynolds-averaged Navier-Stokes (RANS)
equations. It is considered that such problem statement, as well as the used numerical methods and algorithms, are
sufficiently mature, whereas corresponding CFD solvers are thoroughly tested and adjusted [1].

Nevertheless, accuracy and reproducibility of the numerical results often leave somewhat to be desired.
The numerical results of the turbomachinery flow simulations may perceptibly depend on the computational
mesh characteristics such as the cell shape, the size of the nearest cell to the wall y*, the number of cells across
boundary layers, the mesh expansion ratio, the curvature and non-smoothness of mesh lines, etc.

Over the past twenty years, guidelines for choosing the mesh resolution for the numerical simulation
of turbomachinery viscous flows using the RANS models have changed several times: from 100-
200 thousand cells per one blade-to-blade channel in 90-ies of the last century up to 0.5-1.0 million cells per
blade-to-blade channel nowadays [2, 3]. Usually, a mathematical or physical basis of such recommendations
is not clear, the requirements to the mesh refinement are often not well-founded [3] (perhaps, with the only
exception for y*), and in many cases the question of the solution convergence remains open.

A common practice is an approximate estimation of the grid convergence based on comparison of
the following numerical results obtained using different meshes:

— some overall performance, for example efficiency (losses), forces, mass flow, etc. [4, 5];

— graphs of some parameters at solid surfaces [6, 7, 5];

— contours and numerical Schlieren images [8, 9].
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In this case, one can make such comparison using some unjustified strictly quantitative estimates (for
example, the difference of solutions at two different meshes is less than a certain percentage) or purely visu-
ally. The authors of the following research have quite successfully practiced all of these methods for a long
time as well.

Recently, the usage of the grid convergence index (GCI), to estimate convergence, suggested by
Roache [10, 11], is becoming increasingly popular. This approach consists in using a sequence of refining
meshes in order to determine the apparent order of the solution convergence and the relative convergence
error for some overall performance of the flow. Then, based on these data the grid convergence index is cal-
culated, which serves as a universal criterion for comparing solution convergence using various meshes and
methods of the different approximation order. It is substantiated [12] that for GCI<1 % the solution has con-
verged and the flow parameters at the fine mesh are slightly different from the corresponding values calcu-
lated using Richardson extrapolation. With such values of the grid convergence index, the computational
results are quite suitable for studies of complex gas-dynamic phenomena. On the other hand, if GCI<5%,
then the computational results can be used for engineering purposes: to understand the general flow physics
or to perform some comparative studies.

This paper, which continues the previous work of the authors [13], aims at comparing the study of the
grid convergence using the grid convergence index with the traditional approximate method of the visual esti-
mation. A special attention is paid to the analysis of both the mathematical criteria of convergence (the grid
convergence index and the apparent order of the numerical method) and the quality of resolution of shock
waves, tangential discontinuities, separation zones, trailing-edge wakes, etc. Based on this analysis, conclusions
concerning the required mesh refinement are drawn.

Flow model and numerical techniques

We consider the 3D compressible steady statistically-averaged turbulent viscous flow through several
turbomachinery stages and cascades. We use the RANS equation and the k~» SST turbulence model [14] to
describe this type of flow.

The numerical simulation was performed using our in-house CFD solver [15, 16], which is based on
the implicit second-order finite-volume ENO scheme [17, 18] and a simplified multigrid algorithm that is
described below. The local time step was used for the convergence acceleration. During the initial stages of
the computations, the CFL number was chosen in the range from 30 to 50, and at the final stage of the com-
putations it was reduced to 5-10 in order to improve solution accuracy. Also, during each computation the
time step for excessively elongated cells was reduced according to the algorithm suggested by Frink [19].

The mathematical model, the numerical approach, the CFD solver, and comparisons with experimen-
tal data were described in detail in our previous works [15, 20, 21].

Simplified multigrid algorithm

The simplified multigrid algorithm (SMA) consists in using the set of the successively nested
meshes (usually, 4 or 5 nesting levels) for each flow computation. The nested meshes are constructed in such
way that increase in the current nesting level by one corresponds to the growth of the number of cells in each
direction strictly by a factor of two. The flow computations begin on the coarsest of the successively nested
meshes. As the convergence occurs, the numerical results are interpolated to the next finer mesh. This proce-
dure is repeated until the solution convergence on the finest mesh is reached.

Computational meshes

We used H-type meshes with quasi-orthogonal cells in boundary layer zones near the solid walls.
The meshes are refined in the boundary layer regions towards the wall as well as near the leading and trailing
edges of the blades, but in the main flow they are close to uniform. The meshes considered in this study were
conventionally divided into five groups based on the number of cells per one blade-to-blade channel:

1) very coarse meshes of less than 10° cells;

2) coarse meshes of 10°-10° cells;

3) intermediate meshes of 10°-107 cells;

4) fine meshes of 10"-108 cells:

5) very fine meshes of more than 10° cells.
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During the present mesh convergence study, the number of cells in each spatial direction increased by a
factor of two, except for the flow case given in paragraph 9 below. For the meshes of all considered groups,

value of y+ both in the radial and
circumferential directions was set
approximately equal to unity. It was
found that an adequate prediction of
the law of the wall (universal veloc-
ity profile) is possible only if at least
30cells are placed across the
boundary layer and the mesh ex-
pansion ratio in the wall-normal
direction does not exceed 1.1.

Therefore, when we per-
formed computations on meshes of a b
the groups 3, 4, and 5, these re-
quirements were strictly enforced.
Ensuring these requirements on
meshes of the groups 1 and 2 with-
out reducing the accuracy in the
main flow is very complicated, so
in these cases trade-off decisions
were taken.

Fig. 1 shows an example of
a typical mesh considered in this c
study. To clarity, only every fourth
of mesh lines is shown in each direc-
tion.

Fig. 1. The computational mesh in the VKI-Genoa turbine cascade [11]:
a — tangential section; b — mesh fragment near the leading edge;
¢ — meridional section

Time-marching convergence

We considered the constancy of the kinetic energy losses with a given accuracy as the main criterion
of the time-marching convergence of the computations. Additionally, at the inlet and the exit of each blade
row we checked the time-marching convergence of both mass flow and the turbulent kinetic energy fluxes.

It is also important to note that the convergence calculations defects made during the computations
on the coarser meshes with the use of SMA, are slowly eliminated at the finer meshes, especially in small
and highly elongated cells, which are generally located in the boundary layers and along the trailing-edge.
Such behavior can create an illusion of the time-marching convergence of the solution. Therefore, during the
computations with the use of SMA it is extremely important to ensure thoroughly the time-marching conver-
gence of the solution at all levels of the nested meshes.

Grid convergence study technique

The main objective of this paper is to investigate the grid convergence of the numerical solution per
se without being tied to the experimental data. It is evident that both an insufficient adequacy of the mathe-
matical model as well as numerical and experimental errors could lead to the fact that in some cases differ-
ences between the numerical results and the experimental data may increase as the mesh is refined.

We estimated the grid convergence using two approaches. The first approach is a purely visual com-
parison between the characteristic two-dimensional distributions of flow parameters calculated using different
meshes. Such comparisons aimed to estimate the sufficient degree of resolution of both the general pattern of
cascade flows and a number of their features, namely, shock waves, tangential discontinuities, wakes, separa-
tions, etc.

The second approach for the grid convergence estimation used in this paper is based on the grid con-
vergence index proposed by Roache [10, 11]. According to the recommendations for the grid convergence
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index calculation [22], one can use the following procedure to estimate the error associated with insufficient
grid convergence.

1. Three successively refined meshes are considered. These meshes are assigned indices: j=1 for the
finest mesh, j=2 for the intermediate mesh, and j=3 for the coarsest mesh.

2. For each considered j-mesh, one calculates the average representative cell size h;:

" y3
1 J
h; Z[,TZAV[,,} ’ M

J =l

where nj is a number of cells for the j-mesh; AV;; is volume of the i-cell of the j-mesh. According to the first
step of the present procedure the inequality 4,</h,<h; must hold.
3. For each pair of successively refined meshes, one calculates the grid refinement factor

ry=hy [l sy =hyfhy. (2)
4. For each of the meshes, one calculates the key variable ¢;, which will be used to estimate the grid
convergence.
5. The absolute errors of the key variable are determined
=P =015 € =03 =0, (3)
6. One calculates the apparent order of the numerical method using the fixed-point iteration
1
p=——|lnles, /e, | +a(p). 4)
111(”21)| | | X
rh—s
where g(p) = ln( v J and s =sgn(e,/e,,).
3~
7. One calculates the extrapolated value (using the Richardson extrapolation) of the key variable
5P — 9,
w =T, ®)
P i —1

8. The approximate relative error of the calculation on the finest mesh with respect to the calculation
on the intermediate mesh is determined

€
ey =221 6)
¢,
9. For the finest mesh, one calculates the grid convergence index
GCl, =1 (7)
4r)-1

The following remarks can be made on this procedure.

In the case of sufficiently fine meshes, the grid refinement factor r equals to the ratio of the mesh
cell numbers and the equations 1 and 2 can be replaced as follows

rjk:nk/nj. 8)

The value of the grid refinement factor r according to Celik [22], should not be less than 1.3.

Equation (4) that determines the grid convergence contains two absolute value functions. One of
them has the absolute error ratio as argument, and the other imposes in fact the convergence order positive if
the grid refinement factor r is larger than 1. The latter does not follow from the derivation of this equation. In
authors’ opinion, such a misrepresentation can hide an important feature as the solution divergence, when the
discretization errors increase as the mesh is refined, and the apparent grid convergence order becomes nega-
tive. Such behavior may occur not only for ill-posed problems, but also, in particular, in the case of
"numerical saturation” of the solution, when one uses extremely fine meshes. In this study, we determine the
grid convergence order as follows
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1
P=—[1n|832/821|+Q(P)]~ 9
ln(r21)

It is quite obvious that the meshes to be compared should be as similar in their structure as possible,
i.e., a systematic method of grid refinement is preferable to use. It is not recommended to combine meshes of
different types (H-, C- and O-types). Ideally, the cells of different meshes, which are identically located in
the computational domain, should be geometrically similar. This makes it possible to exclude from consid-
eration additional errors related to different mesh structures.

This procedure works well in the case of meshes being in the asymptotic range. If the mesh is beyond
it, the convergence order can significantly differ from the formal difference scheme order. This difference can
occur due to rough meshes, when flow equations are not adequately approximated, or due to extremely fine
meshes, if a round-off error accumulation and "numerical saturation” dominate over numerical errors.

In this paper, we calculate the grid convergence index for the total force f; acting on the blades, and
for the coefficient of the cascade or stage kinetic energy losses (;, defined as

L — 15
= ext Efvl , 10
C] |: It;;);et - Iéfvit :|j ( )

where [ is the enthalpy; the superscripts fot and is represent total and isentropic parameters; the subscripts
inlet and exit denote the parameters at the computational domain inlet and exit, respectively.
We calculate the isentropic enthalpy, according to the idea of Denton [23], based on the growth of

entropy of perfect gas in the flow path:
Iy
Icl;jcit = Iexit [ Sinlet J > (1 1)

S

exit

where S =p / p’ is entropic function; p is pressure and p is density.

Enthalpy and entropy in equations (10) and (11) are averaged in the circumferential and radial directions.

The grid convergence index can be calculated not only for some overall performance, such as effi-
ciency (kinetic energy losses), forces, etc., but also for 3D fields of gas-dynamic parameters. In this case,
instead of values of both the key variable ¢, in equation (6) and the absolute errors € in equations (3), one
can calculate the values of the selected flow parameter and its absolute errors, correspondingly, which are
somehow averaged over the whole 3D flow field. In this paper, we consider the grid convergence index cal-
culated on the base of the 3D density field.

Usually, the relative errors and the grid convergence index are written in percentage terms, which is
done in this paper.

Subsonic flow within the VKI-Genoa cascade

We considered a subsonic flow in the VKI-Genoa turbine cascade that has been experimentally in-
vestigated by Ubaldi [24], and Cicatelli and Sieverding [25]. This is a straight cascade with the exit Mach
number M,;=0.24. We performed the computations using the meshes of about 8 thousand cells, 65 thousand
cells, 520 thousand cells, and 4.2 million cells.

Fig. 2 shows the Mach number contours at the midspan section in the cases of the meshes of 520
thousand cells (Fig. 2, a) and 4.2 million cells (Fig. 2, b). It is clearly seen that the solutions are quite similar.

Table 1 shows the grid convergence study for the VKI-Genoa cascade. The grid convergence of the
kinetic energy losses, the total force acting on the blade, and the 3D density field in the blade-to-blade chan-
nels are investigated in this and further cases. Subscripts C, f and p correspond to the grid convergence pa-
rameters calculated for the kinetic energy losses, the total force and the 3D density field, respectively. Here
and below, the grid convergence index for j-mesh is calculated using the computational results for j-mesh
and two coarser meshes, j — 1 and j — 2.
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Fig. 2. The Mach number contours at the midspan section of the VKI-Genoa turbine cascade:
a — mesh of 5.2-105 cells; b — mesh of 4.2-106 cells

Table 1. Grid convergence for the VKI-Genoa turbine cascade

Number of cells | Mesh group 4 Cext pe | enr | GCI | fIN] |fexINI| pr | eny | GCI| p, | GCI,
8.2:10° ) 0317 ] - - - - 121 - - - - - -
6.5-10" 0.188 | - - - - 1680 - - - - - -
5.2:10° 2 0.127 [ 0.072 | 1.08 [48.00[53.90 170.0 | 171.1 | 1.55 [ 1.19 | 0.78 | 2.04 | 0.07
4.2-10° 3 0.123 1 0.123 [ 4.00 [ 3.08 | 0.26 [ 171.0 [ 171.8 | 1.09 | 0.56 | 0.62 | 1.26 | 0.84

An analysis of the numerical results shows that different parameters have different grid convergence
rates. The solution convergence order p varies from 1 to 2, except for the case of "superconvergence” in the
kinetic energy losses for the finest mesh of the group 3. Also note the excessively high kinetic energy losses
in the case of the coarse mesh of the group 1. These two anomalies are not observed for the grid convergence
of other considered parameters. It allows us to assume that the asymptotic convergence range for kinetic en-
ergy losses is somewhat narrower than for other parameters, and, in this case, the meshes of the groups 1 and
3 are out of it. In this flow case the mesh of the group 3 with about 4.2 million cells is characterized by the
grid convergence index less than unity for all the considered parameters. This mesh is turn to be sufficient
for modeling the flow in the present turbine cascade.

Based on the above results, the authors have chosen the computational mesh for the further investi-
gation of the fully turbulent and transitional flow in this cascade [20, 21].

Transonic flow through the ABB-Saturn turbine stage

We considered the numerical simulation of flow within the turbine stage of the company ABB-
Saturn [26]. In this flow case both cascades are annular, the flow through them is transonic and the exit flow
conditions were M,;;=0.87 for the stator cascade and M,;;=0.71 for the rotor cascade. The computations
were performed using the meshes of about 4 thousand cells, 30 thousand cells, 240 thousand cells,
1.9 million cells, and 15.3 million cells per each blade-to-blade channel of the stator and rotor cascades.

Fig. 3 and 4 show the numerical flow patterns at the midspan section of the stator and rotor cascades,
respectively for computations using the meshes of the groups 2-4. The numerical Schlieren images are given
for the different meshes, whereas the Mach number contours are presented only for the finest mesh.

It is clearly seen from the figures that in the case of the meshes of the group 2 (Fig. 3, a and 4, a) the
shock waves are blurred and it is difficult to define their position precisely. In the case of the mesh of the
3" group (Fig. 3, b and 4, b), the shocks are captured better. A clear shock wave pattern is obtained only us-
ing the mesh of the group 4 (Fig. 3, c and 4, c). Using this mesh, we detected a small separation zone in the
rotor cascade that slightly changes the shock wave configuration. The separation in the stator cascade and the
trailing-edge wakes downstream of both cascades are also best resolved on the finest mesh.

It should be noted that here and further the numerical Schlieren images contain computational arte-
facts in the form of horizontal (axial) and vertical (circumferential or radial) lines near the leading and trail-
ing edges. This phenomenon takes place in the areas of the significant mesh refinement and indicates the loss
of accuracy, which manifests itself in a large error in determination of the flow parameters derivatives.

18 ISSN 2709-2984. Journal of Mechanical Engineering, 2021, vol. 24, no. 1



AEPOT'TAPOJIMHAMIKA TA TEIINIOMACOOBMIH

115000£401
14500801
1135008401
12500E+01
115008401
110500E+01
95000E+00
85000E+00
\75000E+00
650002400
55000400
145000E+00

a b

Fig. 3. The flow pattern at the midspan section of the stator cascade of the ABB-Saturn turbine stage:
a, b, c — numerical Schlieren (meshes of 2.4-105, 1.9-10° and 1.5-107 cells, respectively);
d — Mach number contours (mesh of 1.5-107 cells)
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Fig. 4. The flow pattern at the midspan section of the rotor cascade of the ABB-Saturn turbine stage:

a, b, c — numerical Schlieren (meshes of 2.4-10°, 1.9-10° and 1.5-107 cells, respectively);
d — Mach number contours (mesh of 1.5-10" cells)

Fig. 5 demonstrates the numerical Schlieren images at the cross-flow sections downstream of the sta-
tor (Fig. 5, a, b, ¢) and rotor (Fig. 5, d, e, f) cascades at the distance of about 10 percent of the blade axial
chord in the cases of computations with the use of the meshes of the 2™ group (Fig. 5, a, d), the group 3
(Fig. 5, b, e), and the 4 group (Fig. 5, c, f). Each image shows three blade-to-blade channels of the annular
cascade. It can be seen that in the case of meshes of the group 2, the trailing-edge wakes are fuzzy, especially
downstream of the stator cascade, and the secondary flows in the endwall zones are quite indistinguishable.
The resolution of trailing-edge wakes and secondary flows improves considerably in the case of meshes of
the group 3, and is the clearest in the case of meshes of the 4" group.

Table 2 shows the grid convergence study in the case of the turbine stage flow computations. We consid-
ered the turbine stage kinetic energy losses, the total force acting on the rotor blades, and the 3D density field in
the turbine stage as key variables. There is a tendency of the solution convergence when the mesh is refined. The
grid convergence order of different parameters on different meshes ranges from 0.9 to 1.5, with the exception of
the case of the total force acting on the rotor blades for the mesh of the group 2. In the last case, there is a solution
divergence (negative apparent convergence order) on coarse meshes. In the case of the fine mesh of the group 4,
which contains about 30 million cells within the turbine stage flow path, the grid convergence index for both the
total force and the 3D density field is less than 1. At the same time, the values of the grid convergence index and
the relative error calculated using the kinetic energy losses on this mesh, are quite large and are about 8 and 5 per-
cent, respectively. This fact agrees with the mentioned above differences in the fields of the gas-dynamic parame-
ters on the meshes of the groups 3 and 4 and shows that the meshes of 15 million cells per a blade-to-blade chan-
nel may be insufficient for the assured grid convergence in the case of a turbine stage flow. Nevertheless, such
degree of convergence can be quite sufficient for high-volume engineering computations.
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Fig. 5. The numerical Schlieren images at the crosswise sections of the ABB-Saturn turbine stage:
a, b, c — downstream of the stator trailing edges (meshes of 2.4-10%, 1.9-10% and 1.5-107 cells, respectively); d, e, f —
downstream of the rotor trailing edges (meshes of 2.4-10%, 1.9:10° and 1.5-10” cells, respectively)

Table 2. Grid convergence for the ABB-Saturn turbine stage

Number of cells | Mesh group g Cext pe | ene | GCI | fIN] |fex INI| py ens | GCI | p, |GCI,
2x3.8:10° ) 0177 ] - - | - - [2052] - - - - - -
2x3.0-10 0.129 - - - - 214.0 - - - - - -
2x2.4-10° 2 0.112 | 0.103 | 1.50 [ 15.20{10.40 | 226.1 | 259.3 | -0.45 | 5.33 | -25.0 | 0.225 | 16.10
2x1.9-10° 3 0.103 1 0.093 | 0.92 | 8.74 | 12.30| 230.9 | 234.0 | 1.33 | 2.07 | 1.71 | 0.925 | 1.61
2x1.5-10" 4 0.098 | 0.092 | 0.85 | 5.10 | 7.97 | 232.5|233.4 | 1.52 [ 0.72 | 0.48 | 1.148 | 0.54

Supersonic flow within the compressor cascade of the EU FP7 research project TFAST

We considered supersonic flow through the straight compressor cascade, which has been experimen-
tally and computationally studied in the EU FP7 program project, TFAST [27]. According to the experimen-
tal conditions, the boundary layer was extracted at the endwalls to reduce corner separations and secondary
flows. The computations were carried out at the compression ratio m;=1.22 with the relative inlet Mach num-
ber M,,=1.2 using the meshes of about 0.8 million cells, 2.4 million cells, 9.2 million cells, 54 million cells,
and 250 million cells. All these meshes, excluding the coarsest and the finest ones, at the tangential section
were the same as the 2D meshes used in [28]. In this computational case, the grid refinement factor r varied
for different meshes from 1.46 to 1.8.

Fig. 6 demonstrates the numerical Schlieren images of the flow pattern at the midspan section for the dif-
ferent meshes. It is seen that in the case of the meshes of the group 3 (Fig. 6, a and 6, b) all shock waves are
blurred. In the case of the mesh of the group 4 (Fig. 6, c) the resolution of the bow shock is improved, but the re-
flection of the leading-edge oblique shock impinging on the blade suction side as well as the non-smeared shock
wave pattern near cascade throat and downstream are clearly captured only in the case of the mesh of the group 5
(Fig. 6, d). The mesh refinement significantly improves the flow separation and trailing-edge wake resolution,
especially capturing the tangential discontinuities downstream of the triple-shock points. In the case of the mesh
of the group 5 the resolution of the main flow features is the best, compared to other considered meshes.
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Fig. 6. The numerical Schlieren images at the midspan section of the TFAST compressor cascade:
a, b, ¢, d — meshes of 2.4-10° 9.2-10°, 5.4-107, 2.5-10° cells, respectively

Table 3 shows the grid convergence study in the case of the compressor cascade flow computations.
The grid convergence order on the mesh of the 3™ group varies from 1.1 to 1.9. The meshes of the groups 4
and 5 appear to be out of the asymptotic convergence range when the kinetic energy losses are a key vari-
able, since "superconvergence” is observed. Owing to this fact, in the case of the finest mesh one can observe
the convergence of the calculated kinetic energy losses to their extrapolated value. The grid convergence in-
dices in the cases of meshes of the 4™ and 5™ groups are less than 1 percent. In the case of the finest mesh of
the group 5, the grid convergence order of the total force is negative, which apparently indicates “numerical
saturation” of the solution and means that the total force calculated with the use of this mesh is beyond the
asymptotic convergence range.

Table 3. Grid convergence for the TFAST compressor cascade for n, = 1.22 conditions

Number of cells | Mesh group g Cext pe | ene | GCI | fIN] | fexIN] | pr | ens| GCI| p, | GCI,
7.7-10° 2 01727 - - | =] - J2602] - - | =] - - -
2.4-10° 3 0.1496 | - - | =] - [2669] - - | -] - - -
9.2:10° 0.1373 ] 0.1284 [ 1.94[8.96| 8.07 [ 269.7 | 271.7 | 1.94 [1.00]| 0.94 | 1.056 | 7.371
5.4-10 4 0.1342 ] 0.1337 [3.31[2.31] 0.48 [271.5| 273.2 | 1.30 [0.68] 0.77 [ 0.923 | 0.416
25108 5 0.1340 | 0.1340 | 4.59[0.15] 0.02 | 273.3 | 290.5 | -0.18 | 0.67 | -9.68 | 0.440 | 0.763

Transonic flow within the turbine cascade of the EU FP7 research project TFAST

We considered transonic flow in the turbine cascade, which has been computationally and experi-
mentally studied in the EU FP7 program project, TFAST [27]. This is a straight cascade with the exit Mach
number M ;;=1.05. We calculated the cascade flow using the meshes of about 11 thousand cells, 85 thousand
cells, 680 thousand cells, 5.4 million cells, and 43.5 million cells. Film cooling simulation was provided us-
ing air blowing through two rows of holes uniformly spaced along the blade (46 holes in each row). The area
of each hole was about 0.5 mm?, whereas the blade length and chord were 125 mm and 76 mm, respectively.
We did not consider the cascade flow with film cooling using the meshes of the group 1, since in this case
the wall-surface area of near-wall cells was much larger than the cooling hole area. In the case of the meshes
of the groups 3 and 4 we used from 1 to 4 cells per one hole and from 6 to 16 cells per one hole, respectively.

Fig. 7 presents the Mach number contours at the midspan section of the blade-to-blade channel for
different meshes. In the case of film cooling, the image patches near the leading edges are shown. These fig-
ures demonstrate that the mesh refinement significantly improves the resolution of the shock waves and trail-
ing-edge wakes. So, in the case of the meshes of the groups 2 (Fig. 7, a) and 3 (Fig. 7, b) the resolution of the
first shock wave at the suction side just downstream of the cascade throat is unsatisfactory, and only in the
case of the mesh of the group 4 (Fig. 7, c) this shock wave can be definitely interpreted as a discontinuity.
The cooling gas jets are also better resolved on the finer meshes. It is clearly seen from Fig. 7 that in the case
of the mesh of the group 3 (Fig. 7, d) the cooling jets cling to the blade suction side, whereas in the case of
the mesh of the group 4 (Fig. 7, ) they penetrate much further into the main flow.
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Fig. 7. The Mach number contours at the midspan section of the TFAST turbine cascade:
a, b, c — without film cooling (meshes of 6.8~105, 5.4-10° and 4.35-107 cells, respectively);
d, e — with film cooling (meshes of 5.4-10° and 4.35-10” cells, respectively)

Table 4 shows the grid convergence study in the case where we don’t consider film cooling. There is
a tendency of the solution convergence, while the mesh is refined. The grid convergence order varies from
0.3 to 2.1 for various parameters and meshes. The grid convergence index is less than 1 in the case of the
mesh of the group 4 for all considered parameters, and it is greater than 1 only for kinetic energy losses in
the case of the mesh of the group 3.

Table 4. Grid convergence for the TFAST turbine cascade without film cooling

Number of cells | Mesh group g Cext pe | enc | GCI | fIN] |fexINI| pr | eay | GCI| p, | GCI,
1.1-10 ) 0.0916] - — — - 4914 - - | - — - —
8.5-10* 0.0653| - - - - 14926 - - - - - -
6.8-10° 2 0.0575[0.0542| 1.75 |13.60| 7.15 | 492.4 | 492.4 | 2.75 | 0.04 | 0.01 [0.998 | 1.29
5.4-10° 3 0.0524]0.0428| 0.61 | 9.73 |22.90| 492.2 | 493.2 | 0.39 | 0.05 | 0.20 | 1.123 | 0.50
4.3.10 4 0.0512]0.0508| 2.09 | 2.34 | 0.90 | 492.0 | 491.0 | 0.28 | 0.04 | 0.24 | 0.590 | 0.31

The results of a similar study of the grid convergence for this flow case with film cooling are given
in Table 5. The grid convergence order varies from 0.9 to 1.4, and the grid convergence index in the case of
the mesh of the group 4 for all parameters is less than 1%, except for the kinetic energy losses, for which it is
slightly less than 2 percent. Despite the low values of both the grid convergence index and the relative error,
the authors doubt that in this case the solution has converged. These doubts are confirmed by the abovemen-
tioned comparisons in Fig. 7, d, e, where it is seen that the numerical solution continues to change even on
the finest mesh: the cooling gas jets penetrate much deeper into the main flow when the mesh is refined. The
increase in the kinetic energy losses on the mesh of the group 4 is explained by the increased perturbation of
both the boundary layer and the flow core due to cooling jets. The effect of the cooling jets on the cascade
losses seems to be of the same order of magnitude as the error of a double mesh refinement, therefore, the
value of the grid convergence index does not reflect the convergence process.
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Table 5. Grid convergence for the TFAST turbine cascade with film cooling

Number of cells | Mesh group 4 Cext pc | ene | GCI | fIN] |fexINI| pr | ey | GCI;| p, | GCI,
6.8-10° 2 0.0589| - — - - |4926] - — — - — -
5.4-10° 3 0.0567| - — - - |4919] - - — - - -
43107 4 0.0577]0.0585] 1.14 | 1.73 | 1.81 | 491.7 [ 491.5 | 1.44 | 0.05 | 0.04 | 0.904 | 0.40

Computational time

Table 6 gives the computational time of all considered flow cases and some additional data related
therewith. The data on the computational time per one time step and number of time steps are given for the
finest mesh of each considered flow case (the highest nesting level of SMA). We rounded the number of time
steps and the computational time.

Table 6. Computational time

Cascade Number Dimensions Number Memory, Ti.me per one Number Time,
(stage) of cells of mesh levels GB time step, s | of time steps | days
VKI-Genoa 4.19-10° 128x128x256 4 0.75 15 60000 12
ABB-Saturn 3.07-10" | 2x194x208x384 5 2x2.8=5.6 59 80000 60
TFAST turbine 435107 | 368x224x528 5 9.5 157 100000 195
TFAST compressor | 2.48-10° | 496x496x1008 5 3x16.4=49.2 121 200000 370

Also, some comments concerning the special conditions of the computational experiments are pre-
sented below.

The parallelization of the computations of flow through the ABB-Saturn turbine stage was carried
out using the standard tools of our in-house solver (one blade row per one CPU core/thread). Contrariwise,
we performed the computations of flow within the TFAST compressor cascade (which has the straight blade
and flat plate endwalls) using the truncated computational domain of one half of the blade span and the
symmetry conditions at the cutting plane. When parallelizing the computations in this flow case, the compu-
tational domain was divided into three blocks in the axial direction. Since the communication between the
blocks was time-consuming, the data exchanges were carried out once in the specified number of time steps.
The ENO derivatives and the viscous terms also were "frozen" during several time steps to accelerate the
calculations. These features are not implemented yet in the standard version of the code F, but will be in-
cluded in the future.

We have performed the turbomachinery flow computations using the following PCs operating under
OS Windows 7:

— Intel Core 17-4820, 3.7 GHz, RAM 64 GB (the meshes of the groups 4 and 5);

— Intel Core i7-3770, 3.5 GHz, RAM 32 GB and 16 GB (the meshes of the groups 1-4).

Conclusions

This study confirms the well-known fact that the mesh scales should match the flow scales, namely
the characteristic size of the flow regions with significant gradients of thermodynamic, kinematic and turbu-
lent parameters. These requirements dictate the use of sufficiently fine meshes of at least an order of 10 cells
per one blade-to-blade channel when using the second order-accurate numerical scheme in the case of the
RANS computations. A good resolution of shock waves, flow separation zones, trailing-edge wakes, and
tangential discontinuities needs such meshes. An additional mesh refinement may be necessary due to vari-
ous small-scale features of flow or flow path geometry, such as film cooling holes, vortex generators, etc.

The study of grid convergence using the grid convergence index allows us to make the following
remarks. As well as during time-marching iterations, the kinetic energy losses showed the slowest conver-
gence compared with the total force and the three-dimensional density field. In addition, we have found that
the kinetic energy losses have a narrower range of the asymptotic convergence than that of other considered
parameters. Apparently, viscous and inviscid parameters have different convergence behavior, and, there-
fore, it is preferable to use the grid refinement factor less than 2 and closer to 1.3-1.5.

If the grid refinement study is based on convergence of the kinetic energy losses and the mesh of the
group 1 is used as the coarsest mesh, then the grid convergence index may increase when the mesh is refined.
This is due to the fact that estimation of the kinetic energy losses with the use of very coarse meshes may be
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inadequate. We observed such a phenomenon for the mesh of 3rd group in the cases of both the ABB-Saturn
turbine stage (see Table 2) and the TFAST turbine cascade (see Table 4) and it confirms a narrow range of
asymptotic convergence for the kinetic energy losses.

If fine meshes are used and "numerical saturation” is observed, then the apparent order of the grid
convergence can be either quite high, indicating "superconvergence”, or even negative. In the former case the
grid convergence index is usually small enough, but in the latter case it is negative and, likely, high in mag-
nitude. In this study, the numerical solution obtained for the TFAST compressor flow case using the finest
mesh of the 5™ group with 250 million cells in the blade-to-blade channel (Table 3) is as an example of such
behavior. On the other hand, the numerical solution can demonstrate tangible changes when the mesh is re-
fined, while the grid convergence index for some parameters turns to be small enough. In the following re-
search, examples of this discrepancy are numerical simulations of the flow through the ABB-Saturn stage
using the mesh of the group 4 with about 15 million cells per each blade-to-blade channel (Table 2) and es-
pecially the flow case of the TFAST turbine cascade with film cooling (Table 5). All this allows us to con-
clude that estimation of the grid convergence index by itself is not sufficient for a conclusive analysis of the
grid convergence. An examination of the magnitude and sign of the apparent convergence order, the magni-
tude of the relative error, and also the comparison of the solutions obtained using different meshes visually
can provide additional important information regarding grid convergence.

Concerning the recommendations for the choice of the mesh refinement, we can conclude the fol-
lowing. Scientific studies of the fine flow patterns that aim at very high accuracy and a detailed resolution
require extremely fine meshes, so, in this case, preference should be given to the meshes of the groups 4
and 5. However, such computations are known to be very time-consuming and "time vs. resolution” trade-off
decision is permissible. Therefore, it can be acceptable to use intermediate meshes of the group 3. Of course,
the mentioned above requirements on the near-wall cell size, on the number of cells across a boundary layer,
and on the mesh expansion ratio in the wall-normal direction should be strictly satisfied in this case. In the
case of high-volume industrial computations, aimed at either improving or comparing turbomachinery flow
paths, the use of intermediate (of the group 3) or even coarser meshes may be sufficient. However, one
should keep in mind that such computations often result in the increased flow path efficiency by only 0.001-
0.002 (0.1-0.2 percentage points), which is comparable with discretization errors or even less ones. There-
fore, the final results of such computations should always be verified with the use of finer meshes.
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Bmuiue citkoBoro po3aijienHst Ha 3D RANS mMoaenwoBanHs Tedii
y NPOTOYHHUX YACTHHAX TypOOMAIIUH

'C. B. €pmos, *B. A. SIkoB.ieB
! Camoszaitusituit gocianuK, Oyny, ®innaumis

* [HcTHTYT mpo6ieM MamuHOOyxyBaHHs iM. A. M. ITizropaoro HAH VYxpaiuu,
61046, Ykpaina, m. Xapkis, By:1. [Toxxapcekoro, 2/10

Posenaoaemoca enue cmynenss noopionenHs pisHUYesol Cimku Ha pe3yibImamu PO3PAXYHKY MPUSUMIPHUX mediil
8'513K020 2a3y 6 NPOMOYHUX YACUHAX MYPOOMAWUN nPpU BUKOpUcmanHi mooeneu meyii RANS i uucenvhux memodie Opyzoeo
nopsoky. Bukonano pospaxyhku meuiil 015 psa0y mypOIiHHUX MAd KOMAPECOPHUX PeulimoK HA NOCHO08HO NOOPIOHIOBAHUX
cimkax. Buxopucmogyeanucs cimxu muny H 3 HAOnudiceHO0 0pmo2oHanizayicio KOMIPOK 6 NpUmMencogomy wapi. Pospaxynku
npogodunucs 3a donomozorw CFD poss’sizyeaua F 3 euxopucmarnuam nesignoi ENO cxemu Opyeoeo nopsoky, TOKAIbHO20
KPOKY 30 4acoM i Cnpowenozo 6azamocimkogozo ancopummy. Ilpu pospaxynky meuii Ha OpiOHUX CImMKAX 3aCmMoco8y8anucs:
3ac00uU NPUCKOPEHHS 30IJCHOCMI, Peani308aHi 8 PO36’s13y6ayl; YCIUeHHsl PO3PAXYHKOGOT 001acmi 3 NOOAIbUIUM NOUWUPEHHSIM
Pe3yIbmamie Ha OCHOBI G1ACMUBOCHIT CUMEMPIi; pO3OUMMSL PO3PAXYHKOB0T 00IACI HA YACMUHU | PO3NAPANENIO8AHHS 00YU-
cnenv. IIposedeno sicmasnentss OMpuManux pe3yabmamie K 3a SAKICHUM pO30UIEHHAM CKAAOHOT CIMPYKMYpU MpUSUMIDHUX
nomoxkie, max i 3a KUbKicHor oyinkor empam. Cimkoea 30iCcHICb OYiHIO8ANACS: 080MA CNOCOOAMU. Y nepuiomy 6i3yanbHO
NOPIGHIOBATIUCS, XAPAKMEPHI OB0GUMIDHI PO3NOOLIU NAPAMEmMpIs, OMPUMAHL HA PI3HUX cimkax. Memor makux nopigHsHb
6y10 oyinumu dOCMAmMHIN CIYNIHb PO36°s3KY K 3a2AIbHOL CIPYKmMypu meyii 6 peulimkax, max i it ocoonueocmell, a came,
CcMpUoOKiG YUjilbHeHHs, KOHMAKMHUX PO3PUGIS, BIOPUBHUX 30H, CNii6 ma iH. [[pyeuti cnocib oyiHKu IPYHMYEMbCs Ha IHOEKCE
cimkoeoi 30iocnocmi (GCI). GCI mooice Oymu @usHaueHull He MilbKu 0I5 IHMESPAIbHUX XAPAKMEPUCTIUK TeYll, MAaKux, 5K
empamu, cunu i m. 0., ae i 071 MPUSUMIPHUX NOJIE 2a300UHAMINHUX napamempis, 30kpema posensioasca GCI, pospaxoeanuii
30 MPUBSUMIPHUM NOTeM WibHOCHI. 3pOONIEHO BUCHOBOK, WO OJIsL HAVKOBUX OOCTIONCEHb, SIKI BUMARAIONb GUCOKOI MOYHOCMI
PO3PAXYHKIG I Oemanizayii CmpyKmypu mpusumiproi meuii, nompiowi Oysice OpiOHI pisHUYesE CIMKU, 3 KLIbKICIMIO KOMIPOK 610
10° 00 10° & 00HOMY MidkcnoOnamkosomy Kanani, 6 moii uac AK ONA iHICEHEPHUX POSPAXYHKIE, NPU GUKOHAHHI OESKUX YMOB,
documb Cimox 3 KLIbKICMio KOMIpOK MeHute 1 Mk 8 00HOMY MIdCIONAMKOBOMY KAHAL.

Knrouoei cnosa: pewiimxu mypoomawiun, CFD, 3D RANS modentoganns, 8’s13ka CMUCKaibHa meuis, iHOeKc Cimko-
80i 30i2iCHOCMI, 8MPAMU KiHeMU4HOT eHepeli.
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