УДК 539.3

АНАЛІЗ НАПРУЖЕНО-ДЕФОРМОВАНОГО СТАНУ ТА КОНТАКТНИХ ТИСКІВ НА ПОВЕРХНЯХ БРОНЗОВИХ ВТУЛОК ПІДШИПНИКА ЛОПАТІ ПОВОРОТНО-ЛОПАТЕВОГО РОБОЧОГО КОЛЕСА

¹ В. Г. Суботін, канд. екон. наук office@turboatom.com.ua ORCID: 0000-0002-2489-5836

¹О. С. Бураков

burakov.a.b.s@gmail.com ORCID: 0000-0002-3264-5300

¹**О. В. Душин** ORCID: 0000-0002-1549-5152

¹ В. М. Єфименко efimenko@turboatom.com.ua ORCID: 0000-0003-2140-893X

¹О. О. Коршунов

korshunov_ao@turboatom.com.ua ORCID: 0000-0002-3386-5372

² О. М. Хорєв, канд. техн. наук oleg xo@ukr.net ORCID: 0000-0001-6940-4183

¹ АТ «Турбоатом», 61037, Україна, м. Харків, пр. Московський, 199

² Інститут проблем машинобудування ім. А. М. Підгорного НАН України, 61046, Україна, м. Харків, вул. Пожарського, 2/10

ДИНАМІКА ТА МІЦНІСТЬ МАШИН

Виконано аналіз існуючих та перспективних конструкцій ущільнення лопатей для робочих коліс поворотнолопатевого типу. Обраний тип ущільнення забезпечує максимальну екологічність для робочих коліс поворотнолопатевого типу. Побудовано тривимірну модель сектора корпусу робочого колеса із встановленою цапфою та внутрішньою і зовнішньою втулками цапфи лопаті з урахуванням ииклічної симетрії конструкиї робочого колеса на базі сучасної системи автоматичного проектування. Розроблено схему прикладання зовнішніх навантажень від лопаті та важеля на наведену тривимірну модель сектора корпусу робочого колеса поворотно-лопатевого типу. Здійснено постановку контактної задачі для визначення напружено-деформованого стану та контактних тисків внутрішньої та зовнішньої бронзових втулок цапфи лопаті поворотно-лопатевого робочого колеса за різних режимів роботи. Виконано постановку задачі для методу скінченних елементів із урахуванням схеми прикладання зовнішніх навантажень та контактних обмежень на наведену тривимірну модель сектора корпусу робочого колеса поворотно-лопатевого типу у програмному комплексі для виконання інженерних розрахунків. За результатами розрахунків отримано епюри розподілу головних напружень та епюру розподілу контактного тиску на зовнішній та внутрішній бронзових втулках цанфи лопаті. Опрацьовано результати розрахунків на міцність за даними епюр розподілу головних напружень та визначено контактний тиск на внутрішній та зовнішній бронзових втулках цапфи лопаті. Розроблено методику для подальшого використання наведеної розрахункової схеми при оцінці напружено-деформованого стану деталей робочих коліс поворотно-лопатевого типу з використанням сучасних систем автоматичного проектування та програмного комплексу для виконання інженерних розрахунків. Виконано порівняння напруженодеформованого стану втулок цапфи лопаті для старої та нової конструкцій ущільнення робочого колеса поворотнолопатевого типу.

Ключові слова: втулки підшипників, робоче колесо, метод скінченних елементів, контактна задача, математична модель.

Вступ

Досвід модернізації ущільнень робочих коліс для горизонтальних капсульних агрегатів в AT «Турбоатом» показав, що нові бронзові втулки цапфи лопаті вузла підшипників у вікнах робочого колеса (РК) перебувають в складному напружено-деформованому стані (НДС), в той час як старі втулки цапфи лопаті піддавалися в основному навантаженням на стиснення. В ході модернізації РК, яка торкнулася конструкції існуючого ущільнення [1], виникла необхідність застосувати нову конструкцію бронзових втулок цапфи лопаті з яскраво вираженою консольною частиною для розміщення нової конструкції ущільнення. Це призвело до значного перерозподілу НДС порівняно з вихідним типом ущільнення. Таким чином, для гарантії працездатності вузла підшипника необхідно врахувати весь спектр навантажень, що передаються на втулку з боку системи «лопать+цапфа+важіль».

Статтю ліцензовано на умовах Ліцензії Creative Commons «Attribution» («Атрибуція») 4.0 Міжнародна. © В. Г. Суботін, О. С. Бураков, О. В. Душин, В. М. Єфименко, О. О. Коршунов, О. М. Хорєв, 2021

Опис розрахункової моделі

Циклічна симетрія конструкції дозволяє аналізувати НДС її математичної моделі за допомогою моделювання типового сегмента [2], який може бути деталлю або складаною одиницею. Форма сегмента, обмеження переміщень та діючі навантаження повинні бути аналогічні для всіх циклічно повторюваних сегментів, що формують конструкцію. Враховуючи циклічну симетрію конструкції, для визначення НДС та контактних тисків на поверхні бронзових втулок цапфи лопаті вузла підшипника лопаті РК розв'язано контактну задачу для складаної одиниці, що складається з сегмента корпусу РК (1/4 корпусу РК), цапфи, внутрішньої та зовнішньої бронзових втулок

цапфи лопаті. Контактна взаємодія задана на поверхнях тертя між бронзовими втулками цапфи лопаті та цапфою лопаті та на поверхнях бронзових втулок цапфи лопаті в місцях запресовування їх у корпус РК. Модель для розрахунку показано на рис. 1.

Побудова розрахункової моделі грунтується на аналізі геометричних особливостей конструкції, умов навантаження та взаємодії елементів турбіни, що з'єднуються, і зводиться коротко до такого.

На рис. 2 показано розріз математичної моделі площиною OZ, що проходить через вісь повороту цапфи лопаті та вісь турбіни. На розрізі вказані закріплені поверхні та поверхні, на яких задані умови контакту деталей, що входять до складаної одиниці, що описані далі.

Дискретизація математичної моделі здійснювалася параболічним тетраедральним твердотілим елементом типу TETRA10, що являє собою кривогранний тетраедр з вузлами в вершинах та на серединах сторін. Вузли скінченного елемента мають три ступені свободи з переміщень (див. рис. 3). Скінченно-елементна модель, навантаження та умови показані на рис. 4.

Для розв'язання задачі в контактній постановці [3] задані такі типи контактів між конструктивними елементами:

 – на поверхнях тертя між бронзовими втулками цапфи лопаті та цапфою лопаті — «відсутність проникнення». Цей тип контакту не допускає інтерференції між об'єктами контакту, але допускає появу проміжку між ними;

– на поверхнях бронзових втулок цапфи лопаті в місцях запресовування їх у корпус РК – «зв'язаний». Цей тип контакту жорстко (не допускає появи проміжків та інтерференцію) пов'язує кожен вузол скінченного елемента на контактній поверхні першого цільового об'єкта – втулки з найближчою гранню іншого цільового об'єкта – корпусу РК.

Умови циклічної симетрії задані на відсічених гранях сегмента корпусу РК.

На сегменті корпусу РК в отворах під болти заданий тип закріплення – «зафіксоване». Цей тип закріплення для твердого тіла обмежує три поступальні ступені свободи.

ДИНАМІКА ТА МІЦНІСТЬ МАШИН

Цапфа на поверхні посадки важеля обмежена типом закріплення «заборона повороту на циліндричних гранях». Дане припущення до математичної моделі введено для виключення концентрації напружень в місцях установки шпонок, що передають крутний момент від важеля на лопать РК.

Діючі навантаження – реакції на внутрішній R_1 та зовнішній R_2 опорі цапфи. Їх величини, величини їх проекцій R_X та R_Y на координатні осі визначені в розрахунку потрібних зусиль сервомотора. Координатні осі в цьому розрахунку є локальними для скінченно-елементної моделі складаної одиниці. Навантаження в скінченно-елементній моделі прикладені до торців цапфи лопаті, що йде в запас міцності. Місце їх прикладання в скінченно-елементній моделі складаної одиниці та напрям дії показані на рис. 4.

НДС бронзових втулок цапфи лопаті визначено для режимів роботи турбіни, в яких реакції або на внутрішній, або на зовнішній опорі цапфи є максимальними. Величини реакцій R_1 та R_2 та опис режимів роботи сервомотора РК наведені в табл. 1.

Орієнтація реакцій (табл. 1) відносно осі Y глобальної системи координат визначена з урахуванням їх проекцій R_X та R_Y на координатні осі, які обчислені в розрахунку потрібних зусиль сервомотора. Величини та напрями реакцій R_1 та R_2 , їх проекцій R_{Xi} та R_{Yi} , а також кути α і β , що визначають орієнтацію R_1 та R_2 на площині XY в глобальній системі координат X, Y, Z, наведено в табл. 2 та на рис. 5.

Рис. 4. Скінченно-елементна модель для розрахунку складаної одиниці

T (1 D	-		•	•	••				
Τάδπμμα Γ Ρο	ченми поботи з м	аксимальними па	04141119411144	RHVMNIIIII	1111 ma	1 30641111411	กทกท	ากก	mu
1 иолици 1. 1 с	oncumu pooonnu 5 m	ancamanonama pe	curregerere rece	unput	un mu		unopi	quin	pu

		-		
Режими роботи	Умови роботи	<i>R</i> ₁ , кН	<i>R</i> ₂ , кН	Примітка
Режим 1	Необхідне зусилля сервомотора під час ходи поршня на закриття	1907	2640	$R_{2\max}$
Режим 2	Необхідне зусилля сервомотора під час ходи поршня на відкриття	3193	2549	$R_{1\max}$
Режим 3	Максимальне зусилля сервомотора під час ходи поршня на закриття	982	2731	$R_{2\max}$
Режим 4	Максимальне зусилля сервомотора під час ходи поршня на відкриття	3552	2232	$R_{1\max}$

Таб	лиця 2.	Opi	єнтація	реакцій	в гло	бальній	системі	координат	
-----	---------	-----	---------	---------	-------	---------	---------	-----------	--

						-		
Режими роботи	<i>R_X</i> , кН	<i>R</i> _{<i>Y</i>} , кН	<i>R</i> ₁ , кН	α, °	<i>Rx</i> , кН	<i>R</i> _{<i>Y</i>} , кН	<i>R</i> ₂ , кН	β, °
Режим 1	901	1681	1907	28,195	1177	2363	2340	26,483
Режим 2	863	3074	3193	15,687	1180	2259	2549	27,576
Режим 3	938	291	982	72,798	1174	2466	2732	25,465
Режим 4	853	3448	3552	13,900	1181	2232	2525	27,883

Результати розрахунку

У кожній точці контакту дотичних деталей та деталей, що входять до складаної одиниці, має місце об'ємний (трьохосьовий) напружений стан, що ілюструють епюри розподілу головних напружень

 σ_1 , σ_2 , σ_3 , для режиму 1 (рис. 6–11). Так, на рис. 6–8 показано розподіл головних напружень в площині *OR*₂, що проходить через вісь повороту цапфи і реакцію *R*₂ на зовнішній опорі цапфи, а на рис. 9–11 – в площині *OR*₁, що проходить через вісь повороту цапфи і реакцію *R*₁ на внутрішній опорі цапфи.

Враховуючи низьку пластичність бронзи Бр.О10Ф1 (її відносне подовження δ₅≥3% [4]), для оцінки міцності втулки використовуємо критерій найбільших лінійних деформацій, згідно з яким для матеріалів, що підпорядковуються закону Гука, руйнування або початок пластичних деформацій відбувається тоді, коли найбільша за абсолютною величиною лінійна деформація досягає деякого граничного значення [5, 6].

Згідно з цим критерієм для еквівалентного напруженого стану – одновісного розтягу – еквівалентні напруження $\sigma_{\text{екв}}$ визначаються з виразу

$$\sigma_{e_{\rm KB}} = \sigma_1 - \mu(\sigma_2 + \sigma_3),$$

де σ₁, σ₂, σ₃ – головні напруження; μ – коефіцієнт Пуассона для бронз, знаходиться в межах μ=0,32...0,35. У подальших розрахунках приймаємо μ=0,35, що йде в запас міцності конструкції.

Гранично допустимі напруження під час перевірки на максимальне статичне або пікове навантаження визначаються як [7]

$$[\sigma] = 0.8\sigma_{T} = 0.8 \cdot 140 = 112$$
 MITa,

де $\sigma_{\rm T}$ – границя текучості бронзи БрО10Ф1.

Рис. 6. Розподіл головних напружень **о**₁ в площині OR₂ в робочому режимі роботи турбіни

Рис. 8. Розподіл головних напружень σ₃ в площині OR₂ в робочому режимі роботи турбіни

Puc. 7. Posnodin головних напружень σ₂ в площині OR₂ в робочому режимі роботи турбіни

Рис. 9. Розподіл головних напружень **б** в площині OR₁ в робочому режимі роботи турбіни

ДИНАМІКА ТА МІЦНІСТЬ МАШИН

Визначення НДС зовнішніх втулок цапфи лопаті доцільніше проводити за величинами головних напружень в характерних точках А і Б. Розташування цих точок показано на рис. 12, а величини головних напружень σ_1 , σ_2 , σ_3 та еквівалентних напружень σ_{ekB} наведені в табл. 3. Аналогічним чином можна охарактеризувати НДС внутрішніх втулок цапфи лопаті, взявши за основу величини вищевказаних головних та еквівалентних напружень в точках В і Г, розташування яких показано на рис. 13, а величини – в табл. 4.

Рис. 12. Розташування характерних точок A і Б для визначення НДС зовнішньої втулки цапфи лопаті

Таблиця 3. Величини головних та еквівалентних напружень на зовнішній втулці цапфи лопаті

1.					
Douron	Variationari	Величина діючого напруження, МПа			
Режими	Компоненти	Сторона	Сторона		
росоти	напружень	корпусу,	навантаження,		
		точка А	точка Б		
	σ_1	22,5	32,4		
Downey 1	σ_2	11,8	11,8		
Режим 1	σ_3	-7,8	-22,1		
	σ _{ekb}	21,2	36,0		
Режим 2	σ_1	23,5	44,1		
	σ_2	16,7	12,8		
	σ_3	-8,8	-26,5		
	$\sigma_{e_{KB}}$	20,8	49,0		
Режим 3	σ_1	19,6	37,3		
	σ_2	10,3	13,7		
	σ_3	-6,9	-19,6		
	$\sigma_{e_{KB}}$	18,4	39,3		
Режим 4	σ_1	19,1	34,8		
	σ_2	11,3	11,3		
	σ_3	-10,8	-22,1		

Рис. 13	3. Розташу	вання харак	терних п	10чок В і Г	для
визнач	ення НДС	внутрішньо	ї втулки	цапфи лоп	ami

Таблиця 4. Величини головних та еквівалентних
напружень на внутрішній втулці цапфи лопаті

15					
Downing	Vouroutu	Величина діючого напру- ження, МПа			
гежими	компоненти	Сторона	Сторона		
росоти	напружень	корпусу,	навантаження,		
		точка В	точка Г		
	σ_1	-60,8	-11,9		
Downy 1	σ_2	-69,2	-38,7		
Режим 1	σ_3	-258,0	-234,5		
	$\sigma_{e_{KB}}$	53,7	83,8		
Режим 2	σ_1	-90,3	-54,0		
	σ_2	-102,0	-67,2		
	σ_3	-392,4	-392,4		
	$\sigma_{e_{KB}}$	82,8	106,9		
	σ_1	-23,5	-11,8		
Режим 3	σ_2	-32,4	-28,4		
	σ_3	-111,3	-99,1		
	$\sigma_{e_{KB}}$	26,8	32,9		
Режим 4	σ_1	-100,1	-55,9		
	σ_2	-112,8	-82,4		
	σ	-418,9	-384,6		

DYNAMICS AND STRENGTH OF MACHINES

Для порівняння було виконано аналогічний аналіз НДС конструкції під час роботи старого ущільнення в районі зовнішніх втулок цапфи лопаті. Величини головних та еквівалентних напружень в точках Д і Е наведено в табл. 5, розташування точок показано на рис. 14. Внутрішні втулки цапфи лопаті вузла підшипника конструктивній модернізації не піддавалися, і тому можемо вважати, що картина НДС буде аналогічною для старого та нового типів ущільнень РК.

Рис. 14. Розташування характерних точок Д і Е для визначення НДС зовнішньої втулки РК за старої конструкції ущільнення

Крім міцності втулок цапфи лопаті, критерієм їх працездатності є величини контактних тисків, що діють на робочій поверхні втулки підшипника. Розв'язання задачі в тривимірній постановці дозволило в повній мірі оцінити картину розподілу епюри контактних тисків та працездатність модернізованого ущільнення лопатей РК. Епюру розподілу контактних тисків по робочій поверхні зовнішньої втулки цапфи лопаті вузла підшипника наведено на рис. 15, а величини максимальних діючих і максимально допустимих контактних тисків – в табл. 6.

Висновки

Таким чином, пілдавши всебічному аналізу НДС конструкції модернізованих втулок цапфи лопаті вузла підшипника, можна лійти висновку щодо надійності нової конструкції втулок цапфи лопаті, що передбачає розміщення модернізованого ущільнення та дозволить створювати нові робочі

колеса, які відповідають не тільки високим вимогам міцності і технологічності конструкції, але і забезпечують їх високу екологічність.

Таблиця 5. Величини головних та еквівалентних
напружень на зовнішній втулці цапфи лопаті за
старої конструкції ушільнення

		Величина діючого			
Descumu	Компоненти	напруження, MIIa			
г сжими роботи	напружень	Сторона	Сторона		
peccili	nunpymenib	корпусу,	навантаження,		
		точка Д	точка Е		
	σ_1	-30,4	29,4		
Devenue 1	σ_2	-36,3	-58,9		
і сжим і	σ_3	-29,4	-57,9		
	$\sigma_{e_{KB}}$	-7,5	70,3		
	σ_1	-33,0	39,7		
Downy 2	σ_2	-50,6	-63,0		
Режим 2	σ_3	-35,5	-70,1		
	$\sigma_{e_{KB}}$	-2,8	86,3		
	σ_1	-26,5	33,8		
Devenue 3	σ_2	-33,0	-70,6		
гежим э	σ_3	-27,3	-49,3		
	$\sigma_{e\kappa B}$	-5,4	74,9		
Режим 4	σ_1	-25,8	31,7		
	σ_2	-34,8	-56,4		
	σ_3	-40,5	-57,9		
	$\sigma_{e_{KB}}$	0,6	71,6		

Таблиця 6. Величини максимальних діючих та максимально допустимих контактних тисків на зовнішній втулці цапфи лопаті

Режими роботи	Максимальні діючі контактні тиски, МПа	Максимальні допустимі контактні тиски, МПа
Режим 1	30,1	44.1
Режим 2	28,9	44,1
Режим 3	28,0	63.8
Режим 4	32,4	03,8

Література

- 1. Ковалев Н. Н. Гидротурбины. Конструкции и вопросы проектирования. Л.: Машиностроение, 1971. 584 с.
- 2. Гузнеков В. Н., Журбенко П. А., Бородаева Т. П. Solidworks 2016: Трехмерное моделирование и выполнение электронных чертежей. М.: Изд-во Моск. техн. ун-та им. Н. Э. Баумана, 2017. 124 с.
- 3. Алямовский А. А., Собачкин А. А., Одинцов Е. В., Харитонович А. И., . Пономарев Н. Б. Компьютерное моделирование в инженерной практике. СПб.: БХВ-Петербург, 2005. 783с.
- 4. ГОСТ 613-79. Бронзы оловянные литейные. Марки. Введ. 1980-01-01. М., 2000. 5 с.
- 5. Гольденблат И. И., Копнов В. А. Критерии прочности и пластичности конструкционных материалов. М.: Машиностроение, 1968. 191 с.
- 6. Пономарев С. Д., Бидерман В. Л., Сосновский Л. А. Расчеты на прочность в машиностроении. Сопротивление усталости металлов и сплавов. Справочник: в 2-х ч. М.: Машгиз, 1956. 191 с.
- 7. Васильков Д. Б., Вейц В. Л., Схиртладзе А. Г. Электромеханические приводы металлообрабатывающих станков. Расчет и конструирование. СПб.: Политехника, 2010. 759 с.

Надійшла до редакції 29.07.2021

Анализ напряженно-деформированного состояния и контактных давлений на поверхностях бронзовых втулок подшипника лопасти поворотно-лопастного рабочего колеса

¹В. Г. Субботин, ¹А. С. Бураков, ¹А. В. Душин, ¹В. Н. Ефименко, ¹А. О. Коршунов, ²О. Н. Хорев

¹ АО «Турбоатом», 61037, Украина, г. Харьков, пр. Московский, 199

² Институт проблем машиностроения им. А. Н. Подгорного НАН Украины, 61046 Украины, г. Харимор, ил. Подгорного 2/10

61046, Украина, г. Харьков, ул. Пожарского, 2/10

Выполнен анализ существующих и перспективных конструкций уплотнения лопастей для рабочих колес поворотно-лопастного типа. Выбранный тип уплотнения обеспечивает максимальную экологичность для рабочих колес поворотно-лопастного типа. Построена трехмерная модель сектора корпуса рабочего колеса с установленной цапфой и внутренней и внешней втулками цапфы лопасти с учетом цикличной симметрии конструкции рабочего колеса на базе современной системы автоматического проектирования. Разработана схема приложения внешних нагрузок от лопасти и рычага на приведенную трехмерную модель сектора корпуса рабочего колеса поворотно-лопастного типа. Осуществлена постановка контактной задачи для определения напряженно-деформированного состояния и контактных давлений внутренней и внешней бронзовых втулок цапфы лопасти поворотно-лопастного рабочего колеса при разных режимах работы. Выполнена постановка задачи для метода конечных элементов с учетом схемы приложения внешних усилий и контактных ограничений на приведенную трехмерную модель сектора корпуса рабочего колеса поворотно-лопастного типа в программном комплексе для осуществления инженерных расчетов. По результатам расчетов получены эпюры распределения главных напряжений и эпюра распределения контактного давления на внешней и внутренней бронзовых втулках цапфы лопасти. Обработаны результаты расчетов на прочность по данным эпюр распределения главных напряжений и определено контактное давление на внутренней и внешней бронзовых втулках цапфы лопасти. Разработана методика для дальнейшего использования приведенной расчетной схемы при оценке напряженно-деформированного состояния деталей рабочих колес поворотно-лопастного типа с использованием современных систем автоматического проектирования и программного комплекса для проведения инженерных расчетов. Выполнено сравнение напряженно-деформированного состояния втулок цапфы лопасти для старой и новой конструкций уплотнения рабочего колеса поворотно-лопастного типа.

Ключевые слова: втулки подшипников, рабочее колесо, метод конечных элементов, контактная задача, математическая модель.