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The authors derived a mathematical model of geometrically
nonlinear vibrations of sandwich shells, which describes the
vibrations of the structure with amplitudes comparable to its
thickness. The high-order shear theory is used for the deri-
vation of this model. Rotational inertia is also taken into
account. The middle layer of the structure is a honeycomb
core made using additive FDM technologies. In addition,
each shell layer is described by five variables (three dis-
placement projections and two rotation angles of the normal
to the middle surface). The total number of unknown vari-
ables is fifteen. To obtain a model of nonlinear vibrations of
the structure, the method of given forms is used. The poten-
tial energy, which takes into account the quadratic, cubic,
and fourth powers of the generalized displacements of the
structure, is derived. All generalized displacements are ex-
panded into series by generalized coordinates and eigen-
Jforms, which are recognized as basis functions. It is shown
that the mathematical model of shell vibrations is a system
of nonlinear non-autonomous ordinary differential equa-
tions. Nonlinear periodic vibrations and their bifurcations
have been studied using a numerical procedure, which is a
combination of the continuation method and the shooting
technique. The shooting technique takes into account perio-
dicity conditions expressed by a system of nonlinear alge-
braic equations with respect to the initial conditions of peri-
odic vibrations. These equations are solved using Newton's
method. The properties of nonlinear periodic vibrations and
their bifurcations in the area of subharmonic resonances are
numerically studied. Stable subharmonic vibrations of the
second order, which undergo a saddle-node bifurcation, are
discovered. An infinite sequence of bifurcations leading to
chaotic vibrations is not detected.

Keywords: double curved shell, additive technologies, hon-
eycomb structure, bifurcation behavior.

Multilayer structures have proven themselves well in aerospace engineering field, where they have

been used for over 70 years. This is primarily because these designs have high flexural stiffness at low weight.
In addition, their parts, such as honeycomb structures, are manufactured using additive technologies [1, 2],
which has a number of advantages. For example, these technologies make it possible to produce parts with in-
ternal cavities, which lightweights the construction significantly. Considering this, additive technologies are
also used for the manufacture of aircraft parts [3, 4].

A lot of effort has been devoted to the study of multilayer structures with honeycomb structure. The par-
tial derivative equations of the free vibrations of the conical shell are derived by using variational methods [5].
With the help of Mindlin theory, a composite three-layer structure is numerically studied [6]. The high-order
shear theory by Frostig et al. [7] is used for the analysis of multilayer beams with elastic structure, and one by
Malekzadeh et al. — for the analysis of vibrations of multilayer plates with viscoelastic structure [8]. Free linear
vibrations of multilayer panels with flexible structure are considered in [9]. Transient processes in a multilayer
panel are analyzed by using an efficient interlayer formulation of the problem [10].
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In this paper, a study on sandwich structures is presented. Main novelty of the paper is contained in
the results of numerical modeling of bifurcations of nonlinear forced vibrations in the area of subharmonic
resonances of double curved sandwich shells with honeycomb core, manufactured using additive FDM tech-
nologies. To achieve this goal, a new mathematical model of geometrically nonlinear dynamic deformation
of double curved sandwich shells, which uses high-order shear theory, has been built. The stress-strain state
of each shell layer is described by five parameters (three displacement projections and two rotation angles of
the normal to the middle surface). Using the method of given forms, the specified mathematical model is re-
duced to a system of nonlinear ordinary differential equations. Bifurcations of periodic vibrations of the ob-
tained dynamic system are studied by a numerical method, which is a combination of the continuation meth-
od and the shooting technique.

Problem statement and basic equations

The object of study is a double curved sandwich shell
(Fig. 1). Its upper and lower faces are made of carbon fiber, and the
middle one is a honeycomb core manufactured using FDM tech-
nologies from ULTEM 9085 material. The upper, middle and lower
layers of the shell have constant thicknesses 4, A, i, Deformation
of the structure is considered in curvilinear coordinates (x, y). The
radii of curvature of these coordinate lines are denoted by R, and
R,. 7 axis is directed perpendicular to the axes x, y (Fig. 1). We use
three transverse coordinates z,, z., zp, associated with the three mid-
dle surfaces of the layers. The lengths of the two curved sides of the
shell are a and b (Fig. 1). The main geometric parameters of honey-
comb cell (Fig. 1) are 1, b, h., y, where A, is the thickness of the
honeycomb structure.

The shell performs forced vibrations under periodic excita-
tion by a concentrated force Fjcos(€2f). Its magnitude is large
enough to result in the amplitudes of shell vibrations comparable to
its thickness. Therefore, the shell undergoes geometrically nonlinear |  gyo. 1. Design of a sandwich shell and
deformation, which will be discussed below. a single cell of a honeycomb structure

The stress-strain state of the structure is described by the projections of displacements of the points
of each layer onto the coordinate axes (x, v, z): 1, 1., 13, 1, 15, 13, 1, 1, 1z ®.

The upper and lower layers of the shell are orthotropic. They satisfy Hooke's law in the following form:

(/) |:C11 C12i| (j) ‘
%)) C12 C22 (j)

o) =2Cel); o) =2Ce); o) =2C,e); j=b,t, (1)

¥z
where Gxx(j), cyy(’), cxy(’), cxz(’), Gyz(]), sm(’), 8yy(’), sxy(’), sxz(’), syz(’) are elements of stress and strain tensors.

The honeycomb structure is presented as an equivalent orthotropic medium by homogenization of
the structure [11]. This paper does not consider the calculation of the parameters of the homogenized me-
dium. As a result of such modeling, the matrix of Hooke's law is calculated

() C C C g©
xfc Cll C12 C'13 xfc
s91=C,., C. C. g©
yj/ = C21 sz C23 yj/ >
o9 C. C. C. g©
z: C31 32 C33 z:
o'\ =2C,el); ol =2Cel); of) =2Cel), )

where 6,,, ny( ) 6,9, csyz( ) 6., csxy( ) sxx( ), syy( ) £, syz( ), SXZ( ) sxy(c) are elements of the stresses and

strains tensor of honeycomb structure.
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To describe the state of the deforming shell, the high-order shear theory [12] is used. The displacements
of the points of the upper and lower layers of the shell in the projections on the axes (x, y, z) are given as follows:

ul(’) =uP[ 1+ |+ Zi¢§l) + zichf’) ; u%’) =y 1+20 |+ Z,-d)(z’) + zf(p(z’) ; ug’) =w\: =t b, 3)
Rl RZ

where 1, v, w? are displacements projections of the points of the middle surfaces of the layers onto the

coordinate axes (x, y, z); i=t, b; 0?, ¢, are rotation angles of the normal to the middle surface of the corre-

sponding layer; ¢,, ¢, are unknown functions to be determined.

The displacements field of the homogenized core is given as follows:

Zz Z,
e e (o IR
1 2

()

u§”> =w + zwm + szgc) , 4)

where 4, v, w' are displacements projections of the points of the middle surface of the homogenized

core; ¢;', ¢, are rotation angles of the normal to the middle surface; ;, ', v, v,'” are unknown func-
tions to be determined.

The following boundary conditions and conditions of displacements continuity are fulfilled on the
upper and lower sides of the shell and on the surfaces between the layers:

() _ o _ ) _ ) _
=g =g =g =0
Y 1z,=0.5h, Y7 1z,=0.5h, Y lz,=—0.5h, Y2 lz,=—0.5h,

(c)

b

u’(z, ==0,51) =u'"(z, =0,5h,); u”(z, =0,5h,) =u'"(z, =—0,5h,) ; i=1,2,3. 5)

Using conditions (5), the unknown parameters of the expansions are found (3,4): ¢, @,
© @ @  © . ()
¢ Q2 LY W L, W
The shell is considered to be fixed along the line 0D. Then the boundary conditions take the follow-
ing form:

U0l =0

oD

_ (,~>‘ _ (,~>‘ oD =Zo0: =
=w = = = i=t,c, b. 6
oD aD q)l oD ¢2 aD H L] ()

Geometrically nonlinear deformation is described by a nonlinear relation between deformations and
displacements. The general case of such relations in curvilinear coordinates is given in the monograph [13].
These relations are used further. Substitution of displacements (3, 4) into these nonlinear relations allows to
obtain the following expansions for the elements of strain tensors:

el =eiy +zkio 2 k) + 2k el =€l +zky +zky) + 2k

@) _ () (i) 27 (i) 37.(0) . &) _ o) (i) 27.(i) 3.0 .
€y =€t kgt Zikpy + 20k, s € =€5 T zikg tzikiy 2 k5,

S(ylz) = 8(2i3),0 + Zik%),o + thké?,l + Z?kg),z ; =t ¢, b;
el =efy + 2.k . (7)
All nonlinear terms in relations (7) describing geometrically nonlinear deformation are concentrated
in the terms at the zero power of z;. These terms describe the deformation of the middle surfaces of the shell

layers. All other terms at non-zero terms of z; depend linearly on the displacement projections.
The potential energies of deformation of the faces of the shell have the following form:

U.=0.5 J‘ (cs(”s(") +oDe® 1 gD 4 gD | G(yiz)s(yiﬁ )[1 + %} (1 + %J RR,dydOdz, =

xx @xx wyy xy©xy xz%xz
V. 1 2
— . —_ . — —_ . —_ . —_ . z. z. .
= [(G 0% + Copell +2C 606 + 2Cu 2 +2Ce?” + 20448(;;2)[1 T FJ [1 T R—J RR, dydodz ; i=t, b, (8)
V. 1 2

where y=x/R;; 0=y/R,; V; is the volume occupied by the shell layer.
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Now let’s consider the potential energy of the homogenized layer that corresponds to Hooke's law (2).
The potential energy is given as follows:

xx ©xx wCyy zz ©zz xy ©xy xz ©xz
1 2

U.= O.SJ(G(L)S(L) +699) 16969 + 6 + 61 1 G(°)8(°))[l + —‘j [l + —‘j RR,dydodz, =
yz ©yz R R c
v,

= 05GP + Cpels? +2C e Vels) + 20 +2C el + 2c44s(°'>2)[1 + %J (1 + ;—J RR, dy dOdz, +
V. 1

xx ©yy xyz yz
2

xx ©zz
1 2

+ o.5j(c338§§>2 +2Ce')el) + 2C138(C)8(C>)[1 + ij [l + ;—j RR,dydbdz, . 9)
VC

The kinetic energies of the layers of the 7; structure are given as follows:

1 2

T =0-5J-P,-(ﬂ1(i)2+fl§i)2+ﬂ§i)2(l+%J[l+%JRlR2 dydOdz, ,i=t, c, b, (10)
Vi

. . . o ou?
where p; is the material density of the i-th layer; 4" = g—l
t
The equation of forced nonlinear vibrations
The forced nonlinear vibrations of the shell are expanded into series by the forms of linear vibra-
tions. Therefore, before analyzing a nonlinear system, it is extremely important to study linear vibrations. For
this, the Rayleigh-Ritz method [14] is used. The linear vibrations of the shell are given as follows:

u? | [U(xp) ]

v Vi(x,y)

w | =| W (x,) |cos(t) ; i=b, c, t, (D
DX ()

KSR ACADN

where o is the frequency of linear vibrations; Ud(x, ), Vix, y), Wix, y), Xi(x, ), Y{x, y) are functions to be
calculated that satisfy the boundary conditions (6). These functions will be given in the form of the following
expansions:

N N L N LM
U= 2 AUR U () V=33 AV @V o)s W= 30 AZWE W ()
p=l j=1 p=1 j=1 p=1 j=1
N[(/)[/([f’) N‘.(K)L(ig}
X, =YY APFPWFEO () L= ) 42GW (06 (1), (12)
p=l j=1 p=l j=1

where A=(4,y, 41355 4,,,0,0) 18 the vector of unknown parameters of linear vibrations, which will be
b b

given as follows: 4=(4,,4,,....,4y.); Ux(”(x), UX(Z)(x), ... are basic functions.
The potential energy of the entire structure is written as follows:
Uy, =U,+U_+U,. (13)
Since linear vibrations are studied, nonlinear terms with respect to displacement projections in ex-

pansion (7) are discarded when calculating the potential energy. The kinetic energy of the composite struc-
ture is given as follows:

L=T+T.+1,. (14)

The Rayleigh-Ritz method is used to analyze linear vibrations. It allows to reduce the analysis to the
generalized problem of eigenvalues, from which the eigenfrequencies and forms of vibrations are determined.
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Forced vibrations of the structure are excited by a periodic concentrated force applied at a point with
coordinates x=x,; y=y,. This force is given as follows:

F:FO COS(Qt)S(x_Xan_J’o)a (15)
where Fj, Q are amplitude and frequency of the excitation force, respectively; 6(x—x,, ) is the delta function.

Nonlinear vibrations are expanded into series by the forms of natural vibrations. These expansions
are given as follows:

N, Ny, No,
i) _ NG . i) _ .
w _quw(i—l)-FjVVi,j(x’y)’ o' _zq3NH,+N¢l(i—l)+_/Xi,_/(x9y)’ > _zq3NH,+3N¢I+N¢2 (i71)+jYi,_/(x7y)’
Jj=1 J=1 J=1

Nu Nv
@) _ . @) _ R
u-’ = ZQ3NW+3N¢] +3Ny, +N, (i—1)+jUi,_/ (x,y);, vV= Zq3NW+3N¢I +3N,, +3NM+NV(1>1)+,'V,‘,_/ (x,y);=1,...,3, (16)
j=1 j=1

where W, X;;, Yi;, U;;, Vi, are vibrations eigenforms; 7 is the layer number; j is the number of eigenform;
q=(q1, ..., gn+) 1s the vector of generalized coordinates.

To obtain the generalized forces, the work is written as: 04 =— .[ Fow"dxdy . The generalized
D
force O;, which corresponds to the generalized coordinate ¢j;j=I, ..., N,, takes the following form:
Q; =H cos(Q), where H; =-FW, ;(xy,¥,) -

Expansions (16) are substituted into kinetic and potential energies (8—10). Then the kinetic energy is
given in a quadratic form with respect to the generalized velocities Ty =75 (4, ,...,qy. ) - Potential energy can

be given as follows:
Us =U” (@15 dn )+ U (@1 )+ US (G104, ) (17)
where Uéz)(ql,...,qN*) are quadratic terms to the vector of generalized coordinates; US )(ql,...,q ~.) are cubic

terms to the vector of generalized coordinates; U. ;‘” (9y,----qy. ) are terms of the fourth power to the vector of

generalized coordinates.
The kinetic and potential energies of the structure are substituted into the Lagrange equations. Then
the equations of the structure motion take on the following matrix form:

M, M, 4] [K, K R R H
[ X 12}[?1}{ \ IZH%}{ 12)(Q1,612)+ :3)(41#2) - cos(€2r), (18)
M, My |4 Ky Ky ]l4s Ry7(q1,9,)+ R (41,9,) 0
where H=[H,, ..., Hy,, 0, 0, ...]; %1%(q1, ¢2), R2"(q1, ¢>) is the vector functions of quadratic polynomials with
respect to generalized coordinates; R,°/(¢1, ¢2), Ra"(q1, ¢») is the vector functions of cubic polynomials.
As the faces of the sandwich shell are very thin, and the density of the homogenized honeycomb

core is extremely low, all matrix elements M;,, My, My; are close to zero. In further analysis, these terms are
assumed zero. Then the dynamic system (18) is given as follows:

M, g, + K g, +Kppg, + mgz) (91,9,) + SR?)(% ,q,) =Hcos(Q);

K74 +K»g, +§R(22)(‘]1,612)+93(23)(611a‘]2):0- (19)

The second matrix equation is considered. At the first stage, we discard the nonlinear terms and
write its solution as follows:

4> =Rq,; R=-K;K,,.
The solution (19) is substituted into the second equation (18). The obtained ratios are given as follows:
4, = R, ~ K[ (4. Rg)) + 99 (1. Ray). (20)

Equation (20) is substituted into the first matrix equation (18). As a result, we will get the following
system of differential equations:
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me, +B.d, +ZKU4/ +ZZ°€5?M, +ZZ Zﬁiiilqvq q;, = H, cos(Q) 1)

v=1 j=1 v=l j=1 j; =1

where N1=d1rn(q1); m;; are elements of the mass matrix; Ki* )={ K} is the stiffness matrix, the elements of
which are derived from the following matrix equation: K = K|, —K,K K, ; a,”, By are coefficients
of nonlinear terms of the dynamic system.

The dynamic system (22) is given with respect to dimensionless variables and parameters

q; — Q

szh—; T=0; Q=—; 71,=Q71; (22)
c ('01
(z) (l)
— _ . _ Bi E _ Kij .= _ V] hc .o _ Bth
my=——; P=—"71 Ky=—73 0y =——1 B = ’
m my; myo; myo; : moml
H, FW, (x5, ¥0)

EI

=FW, (x4, ¥9); my=p.h.ab,
mocolh myoh,

where o, is the first eigenfrequency of vibrations of the structure.
The dynamic system (22) with respect to dimensionless variables and parameters takes the following

form:
5%: m,; Y + QB9 ZK 9, +ZZa<’>3 9, +ZZZB§)9 9,9, =H,cos(t)), (23)
Jj=1 v=l j=1 v=l j=1 j=1

where M = {my}.

Numerical analysis of nonlinear vibrations

The numerical modeling of nonlinear vibrations of a sand-
wich hyperbolic paraboloid shell (Fig. 2) is considered. l
The geometric parameters of the honeycomb core are as

follows: Fig. 2. Sandwich hyperbolic

[,=6.1054 mm; /,=3.0527 mm; 6=60°;, /=10 mm,; }76 =0.4 mm, (24) paraboloid shell

where }76 is the thickness of the honeycomb walls; /. is the height of the honeycomb structure.

The honeycomb core is replaced by a homogenized layer with the following mechanical characteristics:
E11=2.91 MPa; E,,=2.91 MPa; E;;=215.1 MPa; v|,=0.972; v,;=0.0051; v,5=0.0042;
G1,=1.118 MPa; G»;=39.1 MPa; G15=39.1 MPa; p.=253.189 kg/m’. (25)

The upper and lower layers are made of carbon fiber, which satisfies Hooke's law. The engineering
constants of this material are as follows:

E,~160x10° Pa; E,=6.8x10’ Pa; v,,~0.32; v,,=0.0136;
G,=800%10° Pa; G..=G,.=4x 10’ Pa; p/=p,=1400 kg/m’. (26)

The geometric parameters of the design are as follows:

a=0.22 m; b=0.33 m; R,=—R,=0.6 m; h=h;=10" m; 1,=10" m.

Periodic vibrations and their bifurcations were studied using the shooting technique [15-18]. It al-
lows to reduce the problem to a system of nonlinear algebraic equations regarding the initial conditions of
periodic vibrations, which is solved by Newton's method. To calculate the Jacobi matrices of the Newton
method, special systems of differential equations are derived. Their solutions are elements of the Jacobi ma-
trices [19, 20]. For calculations of frequency responses, the shooting method is used alongside with the
method of continuation of the solution according to the parameter [15—18].

To assess the stability and bifurcations of periodic vibrations, multipliers were calculated [15-18].

We will numerically study periodic vibrations in the region of subharmonic resonances that satisfy
the condition:

ISSN 2709-2984. Ipobnemu mawunobyoyeanns. 2023. T. 26. Ne 2 11
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Q= 20, + €0,
where @, —is the first dimensionless frequency of vibrations of the structure; 0<e<<l1 is the small parameter;

o is the expansion

The results of calculations of nonlinear vibrations are given on frequency responses (Figs. 3—4).
Fig. 3, a shows the dependence of the second harmonic of the Fourier series of subharmonic vibrations 3,(t;)
on the dimensionless frequency of the excitation Q. Fig. 4, a shows the same dependence for the second
harmonic of the Fourier series of periodic vibrations 9(t;). The AC curve shown in Fig. 3, a describes har-
monic periodic vibrations in the region of the main resonance, undergoing two period-doubling bifurcations
PD, and PD,. Due to these bifurcations, subharmonic solutions of the second order, which are described by a
solid line located between the bifurcation points PD; and SN; appear. Such persistent subharmonic vibrations
undergo saddle-node bifurcation SN;, which results in these fluctuations becoming unstable. Such unstable
subharmonic vibrations are described by a dashed line between the points SN; and PD,. In addition, they
merge into harmonic ones at the bifurcation point of period-doubling PD,, in which unstable harmonic vibra-
tions are transformed into stable ones. The just described dynamic behavior of vibrations can be traced in
Fig. 3, a, where harmonic Ag,® is shown.

Subharmonic vibrations born at bifurcation points of period doubling are polyharmonic. The first
harmonics of the Fourier series of vibrations 91(t;) and 3,(t;) are shown in Fig. 3, b and Fig. 4, b. Such har-
monics occur only in subharmonic vibrations. As can be seen from Fig. 3—4, the first harmonic has much lar-
ger amplitudes compared to the second one. As an example, Fig. 5 shows subharmonic vibrations of the sec-

ond order 9,(t,).

A(l} i

Ag

14

1,35 1

1,3 1

25

i Bl

1,15 A

1,1 -

105

B2
4,00E+00

3,50E+00 -
3,00E+00 -
2,50E+00 -
2,00E+00
1,50E+00 -
1,00E+00 -,
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A
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6,50E-01
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2 1

0,00E+00 T T T

SN,

=]

1,95 2 PD; 24 2,15 2,2

a b

2,05 2,25

Fig. 3. Frequency responses of the harmonics of the Fourier series of vibrations 9,(t):
a — the second harmonic of the Fourier series is shown on the y-axis Ag®;
b — the y-axis shows the first harmonic of the Fourier series AgM

(1
Agy

1:9

2,25

SN,

a b
Fig. 4. Frequency responses of the harmonics of the Fourier series of vibrations $,(t):

a — the second harmonic of the Fourier series is shown on the y-axis Agl(z);
b — the y-axis shows the first harmonic of the Fourier series ASI(I)

23

23
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Conclusions

In the course of the research, a new mathematical
model of nonlinear vibrations of double curved sandwich
shells was derived. Honeycomb core is manufactured using
FDM additive technologies. It is proved that the deformed
state of the shell is described by a high-order shear theory,
and the dynamic behavior of each layer of the shell is de-
scribed by five values (three displacement projections and
three rotation angles of the normal to the middle surface). =

Using the method of given forms, a system of non- | Fig. 5. Subharmonic vibrations of the second order
linear ordinary differential equations that describes the non- | at the frequency of the excitation action Q =2.187
linear vibrations of a sandwich structure is derived.

As the upper and lower layers are thin, and the density of the honeycomb core is small, some of the elements
of the mass matrix have elements close to zero. As a result, part of the generalized coordinates behaves qua-
si-statically. These generalized coordinates are expressed in terms of other generalized coordinates that de-
scribe high-frequency vibrations. This approach makes it possible to reduce the dimensionality of the dy-
namic system describing nonlinear vibrations.

To investigate periodic vibrations, the resulting system of nonlinear ordinary differential equations is
numerically studied using a specially developed approach that includes a combination of the continuation
method and the shooting technique. Using this approach, frequency responses of vibrations were obtained
and bifurcations of periodic vibrations were studied.

Nonlinear vibrations of the structure are expanded into series by the eigenforms of linear vibrations.
Therefore, the analysis of linear vibrations is an important step in the study of nonlinear dynamics of a struc-
ture. The Rayleigh-Ritz method was used to study linear vibrations.

Vibrations with significant amplitudes in the region of subharmonic resonance were detected, when
the frequency of the excitation action is close to twice the natural frequency of the structure's vibrations.
These subharmonic vibrations arise as a result of the period-doubling bifurcations of harmonic vibrations.
Such subharmonic vibrations undergo saddle-node bifurcation and are polyharmonic with the predominant
first harmonic of the Fourier series. Note that the period-doubling bifurcation has a single occurrence and
does not lead to an infinite sequence of period-doubling bifurcations.
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Bigypkanii Ta cTilikicTh HeTiHIHUX KOJIMBaHb TPHUIIAPOBOI KOMIIO3UTHOI 000JIOHKH
3 NOMipHMMH AMILTITYaMH

'K. B. ABpamoB, ' B. B. Ycnencbkuii, 2 1. A. Ypusiesa, * 1. /. BpeciaBchkuii

'THcTHTYT Ipo6neM MammHOGY ayBaHHs iM. A. M. ITizroproro HAH Ykpainu,
61046, Ykpaina, M. XapkiB, By [1oxkapcbkoro, 2/10

? XapkiBCchKHil HAL[OHATBHHIT YHIBEPCUTET PaioeIeKTPOHIKH, 61166, Ykpaina, m. Xapkis, np. Hayku, 14
3 VYriBepcurer Makruimia, Kanaga QC H3A 0C3, Montreal, 817 Rue Sherbrooke O #270

Asmopamu susedeno mamemamuyny Mooeib 2e0MeMpUIHO HELIHIUHUX KOIUBAHb MPUULAPOBUX 0OONIOHOK, KA
ONUCYE KOMUBAHHSI KOHCIMPYKYIL 3 aMAIimyoamu, nopisHsHumu 3 it mosuuror. Ilpu eusedenni yiei moodeni euKxopucmo-
8YEMbCSL MEOPis 3CY8Y GUCOK020 NOPAOKY. Inepyia obepmanns maxodic epaxogyemucs. Ipu ybomy cepeouiu wap € cmi-
JILHUKOBUM 3ANOBHIOBAUEM, BULOTOGACHUM 3a80SKU adumusHum mexuoao2iam FDM. Kpim moezo, kodcen wap 060101KU
ONUCYEMBCSL N'AMbMA SMIHHUMU (MPbOMA NPOEKYIAMU NepemieHb | 080MA KYMAMU NOBOPOMY HOPMAL 00 cepeOuHHOL
noeepxHi). 3a2aibHa KilbKicmb He8iOOMUX 3MIHHUX OOPIGHIOE n'smHadysmu. /[ ompumants MOOeE HelHIHUX KOIu-
8aHbL KOHCMPYKYIT BUKOPUCMAHO MemoO 3a0anux Qopm. Busedeno nomenyitiny enepeiio, aka 6paxogye K6aOpamuni,
KYOIuHi U uemeepmi cmeneHi y3a2albHeHux nepemiujeHb KOHCmpYKyii. Bci yzazanoheni nepemiujerHs: po3kiaoarmoscs
30 Y3a20bHEHUMU KOOPOUHAMAMU | GIACHUMU hopmamu, AKI susHaromucs 6azoeumu Qyukyiamu. /Josedeno, wo ma-
MeMamuyia Mooeib KOIUBAHb ODONOHKU € CUCIEMOI0 HENIHIUHUX HEeABMOHOMHUX 36UYAUHUX OughepeHyianbHux pis-
HAAHb. [ 00CHi0dCeHHs HeNIHIUHUX NepIOOUYHUX KOIUBAHb ma ix OIyprayili 3acmoco8yemvcs yucenvbHa npoyedypa,
KA € NOEOHAHHAM MEMOOY NPOOOBIHCEHHS | MeMoOy npucmpinioganus. Memoo npucmpinioeanus 6paxo8ye ymosu nepi-
00UYHOCII, WO BUPAICATOMbC CUCMEMOIO HENIHIUHUX PIGHAHb an2eOpu Woo0o NOYAMKOBUX YMO8 NePiOOUUHUX KOIU-
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sany. L{i pisnuanns poss’azyiomecs 3 eukopucmanusm memooa Hotomona. Hucenvno 00cniodceHo 1acmueocmi Hei-

HITIHUX
HIUHI K

nepioouyHUX Koausans ma ix oigyypkayiti 6 001acmsax cyoeapMOHIYHUX Pe30HAHCI8. Buseneno cmiliki cybzapmo-
ONIUBAHHS OPY2020 NOPAOKY, SKI 3a3HAOMb CI0N0-8y310801 Oighyprayii. Heckinuennoi nociioosnocmi oighyprayiil,

wo npu360<)umb 00 XAQOMU4HUX KOJIU6AHb, HE BUABIIEHO.

Kntwouoei cnosa: 06010nKka noosiliHol KpusUsHU, AOUMUGHI MEXHON02I, CMITbHUKOBUIL 3an08HIo8al, Oigypra-

yilna nogedinka.
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