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Introduction

The design of cargo aircrafts includes roller conveyor equipment designed
to move cargo in the fuselage compartment. The working elements of the roller
conveyor are rollers made of pressed aluminum tubular profiles or composite tubu-
lar elements. The limit deviations of the diameter for standard aluminum profiles
are: +0.5...£1.2 mm, and for composite ones they have a similar or greater value.
Naturally, in the process of manufacturing profiles by pressing or by the pultrusion
method (if a composite material profile is used), an eccentricity A occurs between
the axes of the outer and inner surfaces of the profile (Fig. 1).

Moreover, if some defects in the form of warping of aluminum profiles
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This paper is dedicated to ensuring the strength of cargo equipment
elements of transport aircraft. The strength of rollers of roller convey-
ors, which are made of standard pressed aluminum tubular profiles or
composite tubular elements, is considered. The main disadvantage of
these semi-finished products is the deviation of the diameter of these
standard aluminum profiles, which leads to the emergence of eccen-
tricity A between the axes of the outer and inner surfaces. The influ-
ence of eccentricity on the change in the values of normal and tangen-
tial stresses is considered. This analysis was carried out for standard
diameters of tubular profiles at values A equal to half of the standard
limit deviation of the outer diameter D. Calculations of normal and
tangential stresses and their comparison with nominal stresses that
occur in the absence of misalignment have been carried out. Calcula-
tions were made of the value ¢ of the removal of the center of rigidity
firom the center of the circle of the outer border of the cross-section at
different cross-section sizes of standard profiles with values of A equal
to half of the standard limit deviation of the outer diameter D inclu-
sively. The calculations showed an increase in tangential stresses t in
some cases by 64% and even by 213%. The obtained results indicate
that the presence of A#0 will have a negative effect on the resource of
these elements. In order to eliminate the negative consequences, it is
necessary to increase the requirements for the shape deviation of the
tubular profiles in the input control.

Keywords: cargo equipment of transport aircrafi, roller conveyor,
tubular profile, misalignment, influence of eccentricity, thin-walled
rod, center of cross-sectional rigidity, normal and tangential stresses,
shape deviation, resource.
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Fig. 1. Cross-section

can be eliminated with the help of special technological procedures, it is not possible to correct the misalignment
of the inner and outer surfaces of the profile. The consequences of the presence of A are considered below.

Changes in calculations in the presence of eccentricity A

It was assumed that distributed forces act on the tubular element of the roller conveyor in a vertical
plane that passes through the axis, which is the rotation axis of this element. There are internal force factors
in the cross-section — bending moment and transverse force acting in the specified plane.

The diagram of the transverse force loading of the tubular element is shown in Fig. 2 conditionally tak-
ing into account its rotation. In fact, only one transverse force O, (O,=0,), which is shown in Fig. 2 in order to
consider the case of the roller loading when it turns on 90° (with 0,=0), acts in the cross-section of the roller.
Perfectly shaped roller (A=0, Q,=0) is in a state of transverse bending (Fig. 2).
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The specified eccentricity can negatively affect the tension state
of the roller in a number of cases (with significant values A). In the future, rotation

the roller will be considered as a thin-walled rod [1]. Moreover, the wall /’ F
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thickness of the section of this rod is variable: for the upper half of the

. D—-d 2A . . 9
section it is d(at) = ———— A +—a.. The variable thickness affects other Ot /{%
geometric characteristics of the cross-section and causes certain correc- <
tions in the calculations of dangerous stresses. / S(er)

In the presence of A, the most dangerous from the point of view of
normal stresses is the load of the roller in the position in which only the "
force O, acts. For the normal stress o, which is calculated according to the Fig. 2. Load in the cross-section

basic formula of resistance of materials [2], the increase is caused by a decrease in the axial moment of inertia
I, and by an increase of the distance from the main central axis, perpendicular to the axis of symmetry, to the
extreme fiber of the section in the place where the wall has the smallest thickness. Moreover, both of these pa-
rameter changes lead to an increase in stress o in absolute value. It should be noted that the basic formula of
material resistance is used not only when calculating normal stresses in beams and thin-walled rods [1].

Determination of tangential stresses T at A#0 is more difficult. Eccentricity during loading [3], as al-
ways, leads to a change in the character of the action of external forces. It is due to the fact that in the pres-
ence of a transverse force acting in the cross-section of a thin-walled rod, transverse bending and torsion oc-
cur at the same time, if the line of action of the force does not cross a special point of the cross-section [4, 5].

This special point in the cross-section of a thin-walled rod of an open profile is called the bending center,
and in the cross-sections of a closed profile — the center of rigidity [4, 5] (or the center of torsion [1]). In an annu-
lar cross-section (A=0) the center of rigidity of the cross-section is located in the center of the circles and when the
roller is loaded with a transverse force, only transverse bending occurs, and torsion does not occur [4, 5].

At A#0 the geometric characteristics of the section will change and the center of rigidity will shift
along the axis x (Fig. 2) in the direction of the greatest wall thickness. In this case, not only transverse bending,
but also torsion will act in the cross-section of the tubular element. At the same time, the torque is 7=0, -c,
where ¢ — from the axis of the tubular element to the center of rigidity. In the considered thin-walled section,
tangential stresses are constant throughout the thickness of the section wall [1] and are determined by the sum-
mation of two components: transverse bending and torsion [4, 6].

It should be borne in mind that at A#0 the contour line is a circle of radius R,, with variable cross-
section wall thickness d(a) = DTd— A +2—Aoc. Function 8(a) is a linear dependence. Therefore, the calcu-

T

lation of this cross-section is not reduced to the application of simple compact formulas that were used for
the case A=0. When determining internal tangential forces along the contour of the section of a thin-walled
rod instead of tangential stresses (constant along the wall thickness at each point of the contour line, which
has the shape of a circle of radius R,,) it is customary to use flows of tangential forces g =1-0.

Flows ¢, caused by transverse bending (shear), are determined in this case by the formula
g(0)=g,+q,(a),

where ¢, is the constant part of the flow at the leftmost point of the cross-section (Fig. 2), from which the
contour of the cross-section is bypassed (angle a); g,(o) is the variable part of the flow.
Flow g,(a) is found by a known dependence [4, 6]:

q,() =—%Sx(a),

where Si(a) is the current static moment of the cross-sectional area.

Moreover S, (o) = j y(a)d(a)R, do, where y(a) =R, sina is the distance from the point (o) on the
0

contour line to the axis x.
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From the condition of static equivalence of moments: the moment from the flow of tangential forces
g0 +9q,(0) must be equal to the moment from Q, in relation to any point; taking this point as the center of the

contour circle, we get
1 2
40 == 4, ()R3do.,
where Q =2nR? is the doubled contour area.
Flows ¢, caused by torsion, are determined by Bredt's formula ¢, = g To define T, ¢ must be found

— from the axis of the tubular element to the center of rigidity. The search for the position of the center of
rigidity of the section is usually carried out by the fictitious moment method [5-9]. When using this method,
T is found from physical considerations, from which 7'=0-GI . Here 0 is the linear angle of twisting of the
cross-section, and / is the torsional constant, G is the modulus of rigidity.

For the cross-section under consideration, the torsional rigidity values and the angular twist angle are
calculated according to the following formulas

2
G]:Q— and ezl M_
R, do. ol Gsw)
G5 (a1)

And when calculating 0 the integral must be taken numerically.

The product of the linear twisting angle by the torsional rigidity will give the value 7. By dividing
the torque 7" on the magnitude of the transverse force Q,, it is possible to find the distance ¢ to the center of
rigidity of the section. In addition, by magnitude T the value of the flow of tangential forces during torsion
can be found using Bredt's formula (g,). The magnitude of the total flow of tangential forces g,+¢, will allow
to determine the tangential stresses at various points along the contour and evaluate their changes compared
to the stresses in an ideal section (A=0).

The influence of misalignment on stress magnitude

The problem of changes in the values of normal and tangential stresses due to misalignment, which
was studied for standard diameters of tubular profiles at the values A equal to half of the standard deviation
of the outer diameter D.

For normal stresses, the size of their increase depended on the wall thickness § = D-d and medium

D+d .
ratio.

diameter D, =2R =

For rollers D=40 mm at eccentricity A=0.5 mm and 6=2 mm calculations showed [2] an increase in
normal stresses ¢ by 14.2%, and at 6=3.5 mm increase in stresses ¢ became 6,3%.

For rollers D=60 mm at eccentricity A=0.6 mm and 6=2 mm calculations showed an increase in normal
stresses ¢ by 18.8%. At =4 mm increase in stresses o became 7.2%, and at 6=5 mm — 5.3%.

For rollers D=82 mm at eccentricity A=0.9 mm and 6=2 mm calculations showed an increase in normal
stresses o by 34.5%. At =4 mm increase in stresses ¢ became 12.5%, and at 6=6 mm — 7.1%.

For rollers D=115 mm at eccentricity A=1.2 mm and 6=4 mm calculations showed an increase in nor-
mal stresses o by 18.8%. At 6=6.4 mm increase in stresses 6 became 10.7%, and at =8 mm — 7.2%.

However, for rollers of short length, tangential stresses are decisive in their work [2]. With an ideal
shape (a hollow cylinder at A=0) these stresses are caused by transverse shear [4]. In the presence of misalign-
ment (A#0) torsional stresses are added to shear stresses. The component of torsional stresses ¢ is caused by the
moment from the transverse force, since the line of its action does not pass through the center of rigidity [5].

When determining the increase in tangential stresses, the flows of tangential forces
g(a) =g, +q,(a) are obtained in a closed contour for two options of the cross-section (A=0 and A#0) [5].

Flow ¢ is the constant part of the flow of tangential forces. Composite g,(a) depends on the contour coordi-
nate o, the start of the detour along which is chosen at the point of the contour located at the intersection with
the x-axis on the right (Fig. 2). Coordinate a increases counterclockwise.
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The torque from the flow of tangential forces can be balanced only by frictional forces on the outer
surface of the tubular element of the roller conveyor. In this case, a transverse shift and bending in the direc-
tion of the x-axis will occur. These problems were not considered in this paper, although the appearance of
additional frictional forces will contribute to the reduction of the service life of these elements.

The location of the center of rigidity at A#0 is unknown.

Calculations of the value ¢ have been carried out, ¢ is the distance of the center of rigidity from the
center of the circle of the outer border of the cross-section at different cross-section sizes of standard profiles
at the values A, which are no more than half of the standard deviation of the outer diameter D.

Fig. 3 shows the calculation results of parameter ¢/R,,, which | . /R,
positions the position of the center of rigidity in the cross-section. A
For rollers D=40 mm at eccentricity A=0.5 mm and 6=2mm | o031
calculations showed an increase in tangential stresses t by 27.8%, and at i §=2mm
0=3.5 mm increase in stresses T became 39.3%.
For rollers D=60 mm at eccentricity A=0.6 mm and =2 mm | 0.27

calculations showed an increase in tangential stresses T by 35.5%, and at 1 S=4mm
=4 mm increase in stresses T became 51.5%, and at 6=5 mm — 63.7%. o1l
For rollers D=82 mm at eccentricity A=0.9 mm and =2 mm ’ S5t
calculations showed an increase in tangential stresses T by 67.3%, and at T
=4 mm increase in stresses T became 61.7%, and at =6 mm — 95.9%. 0 —— >
For rollers D=115 mm at eccentricity A=1.2 mm and 6=4 mm 0.1 02 03 04 05 0.6 A mm
calculations showed an increase in tangential stresses T by 64.0%, and at Fig. 3. The position of the center
&=6 mm increase in stresses T became 213%, and at 5=8 mm — 240%. of rigidity in the cross-section D=60 mm

It should be pointed out that in the calculations for the given options, the reduction in the moment of
inertia of the cross-section in comparison with the annular section did not exceed 3.2% in most cases (the
exception is the option D=82 mm at eccentricity A=0.9 mm and =2 mm — 7.22%).

Conclusions

The obtained results indicate that the presence of A#0 will reduce the resource of these elements.

The presence of torsional deformation with torque balancing by frictional forces can lead to com-
pressed torsion due to frictional forces in the direction of the axis of the tubular element, and this will have
an even more negative effect on the stress state of this element.

To eliminate these shortcomings, the requirements for shape deviation should be increased in the in-
put control of tubular profiles.
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Po3paxyHok Tpyo4yacTHX ejieMeHTIB 3 mpecoBaHuX mpodinis

M. M. I'peGennikos, O. I'. i6ip, A. O. Knpnixin, | M. I Hekenmuii|

Hamionansauii acpokocMigHmi yHiBepcuTeT iM. M. €. JKyKoBCbKOTO «XapKiBChKUN aBiallitHUHN IHCTHTYTY,
61070, Ykpaina, XapkiB, Bysa. Ukanosa, 17

Poboma npuceauena euceimiennio numanusa 3a0e3neueHHs MIYHOCMI eleMeHmi8 8AHMANCHO20 O00IAOHAHHA
MPAHCROPMHUX IMAaKie. J0Cniodceno MiyHiCmb POIUKI8 PONbeaN2ls, SIKI GUSOMOBISIOMbCA 13 CMAHOAPMHUX NPECOBAHUX
antominiesux mpyoyacmux npoghinie abo KOMNO3UMHUX MPYOUAcCmuUX enemMenmis. AKYeHmMosarHo Ha Mmomy, wo 20108HUM
HeOO0NKOM Yux Hanispadpuxamis ¢ GiOXuieHHs Oiamempy yux CmMaHOaApPMHUX aOMIHIE8UX NPo@inis, sike Npu3800UmMb 00
BUHUKHENHA eKxcyenmpucumemy A Midc 0cAMU 308HIUHBOT Ma 6HYMPIUHLOI N08epXOHb. Po32nsanymo 6naue excyenmpu-
cumemy Ha 3MIHY 8eIUYUH HOPMATLHUX T OOMUYHUX HANPYICeHb. AHANI3 NPOBOOUBCS 011 CIMAHOAPMHUX diaMempie mpyo-
yacmux npo@inie npu seauyunax A, pigHux noa0GUHI CIMAHOAPMHO20 SPAHUYHO20 GIOXUNEHHS 308HIUHbO2O diamempa D.
Buxonano po3paxyHxu HOpMAanibHUX i OOMUYHUX HANPYHCEHb A iIX NOPIGHAHHA 3 HOMIHATLHUMU HANDYIHCEHHAMU, WO 8U-
HUKaiomo 3a eiocymuocmi necnisgicnocmi. Ilpoedeno po3paxyHku 6eiudutu ¢ — GUOANIEHHS YEHMPY HCOPCMKOCMI 8i0
YEHmpPY OKPYAHCHOCTHI 3068HIUHBOT MeICT nepepisy npu Pi3HUX po3MIpax nepepizy cmarHoapmuux npoqQinie npu eiuyunax
A, pieHux He Oinbul NONOBUHU CIMAHOAPMHO20 SPAHUUHO20 GIOXUNEHHS 308HIWNb020 diamempa D. Po3paxyuxu nokazanu
3POCAHHA OOMUYHUX HANPYHCEHb T Y OesaKUx sunaoxax Ha 64% i nagime na 213%. Ompumani pe3yiemamu c8i0uams,
wo Hasenicmob A#(0 neeamusHo NOZHAYUMBCSL HA pecypCi yux enemenmis. s ycyHenHs Heeamuehux HACIioKig i) y 8Xio-
HOMY KOHMPOJI NiO8UUmu umoau 3 8i0XuienHs popmu 0o mpyouacmux npo@inis.

Kniouosi cnosa: sanmasicne 001a0nanHs MPAHCNOPMHUX JIMAKIB, POIUK POabeaH2y, mpybouacmuil npo@ino,
HeCniggiCHiCmb, GNIUG EKCYCHMPUCUMENY, MOHKOCTIHHUL CIPUICEHb, YEHMP JHCOPCMKOCTI NONEPeuHo20 nepepisy,
HOPMAbHI Ma OOMUYHI HANPYICEHHS, 8IOXUNEHHS (hOpMU, pecypC.
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