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In this paper, the R-functions method is used for the first time to
study the stability and vibrations of porous functionally graded (FG)
sandwich plates with a complex geometric shape. It is assumed that
the face layers of the plate are made of functionally graded materi-
als, and the middle layer is isotropic, namely ceramic. Differential
equations of motion were obtained using the first-order shear de-
Jformation theory with a given shear coefficient (FSDT). Two models
of porosity distribution according to the power (P-law) and sigmoid
(S-law) laws were studied. Analytical expressions for calculating the
effective mechanical characteristics of functionally graded materials
with even and uneven porosity distribution were obtained. Proposed
approach takes into account the fact that the subcritical state of the
plate can be heterogeneous, and therefore, first of all, the stresses in
the middle plane of the plate are determined, and then the eigen-
value problem is solved in order to find the critical load. To deter-
mine the critical load and plate frequencies, the Ritz method com-
bined with the R-functions theory was used. Developed algorithms
and software are tested on case studies and compared with known
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results obtained by another methods. A number of problems of sta-
bility and vibrations of the porous functionally graded sandwich
plates with a complex geometric shape for various layer arrange-
ment schemes, various boundary conditions and laws of porosity
distribution have been solved.
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Introduction and analysis of recent research

The tasks of determining the critical load and investigation of free vibrations of plates and shells
have always been relevant for engineers engaged in the design of thin-walled structures. It is connected with
the requirement to the strength of the structure. Considering that a large number of elements of thin-walled
structures are made from functionally graded materials (FGM), this problem is still actual for modern com-
posite materials. Despite a lot of number of foreign papers devoted to this problem [1-3], there are many
points that have not solved yet. One of them is the development of effective methods of researching the static
and dynamic behavior of functionally graded (FG) plates and shells of complex geometric shape under dif-
ferent types of load and conditions of elements fixed. This especially applies to sandwich FG plates and
shells, taking into account such factors as porosity, the presence of an elastic base, uneven load of the object
in the middle plane, variable thickness, etc.

Analysis of the existing literature shows that analytical methods for studying the stability and vibra-
tions of elements of rectangular shape that usually are simply supported on the boundary are the most devel-
oped ones [4—10]. In the case of plates of a different shape, it is suggested applying the most commonly used
numerical finite element method (FEM) [11]. Unfortunately, the authors are not aware of papers in which
specific numerical calculations, obtained by FEM for sandwich FG plates of a complex geometric shape
(which differ from rectangular plates) taking into account the heterogeneous subcritical state are given.

This paper proposes a numerically analytical approach to solving one of the listed problems, namely,
a method for determining the critical load and natural frequencies of porous plates of arbitrary geometric
shape. It is assumed that porosity is modeled by power or sigmoid laws. The method is based on the use of
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the R-functions method and the Ritz variational method. The main idea of the method was proposed earlier
in papers [12-16] for studying the stability and vibrations of isotropic, orthotropic, single-layer and multi-
layer plates, functionally graded single-layer and sandwich plates. In the proposed study, this method was
applied for the first time to porous P- and S-FGM sandwich plates. Analytical expressions for calculating the
effective properties of such materials were obtained and their reliability was checked on test examples. The
developed approach is applied to the calculation of porous FG sandwich plates of complex geometric shape.

Problem statement

A porous FG sandwich plate of arbitrary geometric shape compressed by forces in the middle plane
is considered. It is assumed that the outer layers are made of FGM, namely from a mixture of metal and ce-
ramics, and the inner layer (core) is ceramic. It is necessary to determine the critical load and natural fre-
quencies of the plate, if there is porosity in the outer layers, and the distribution of partial fractions of ceram-
ics occurs according to different laws, namely, power law and sigmoid law.

2.1. Mechanical properties of FGM

Two types of porosity distribution in FG layers are considered: even and uneven. The effective me-
chanical properties of FGM (Young modulus £ and the material density p) in case of even distribution of
porosity are determined by formulas (1) [7-10]:

PY(z2)=P, +(P. - P,V V() —%(11 +P,),
PP (z)=P, +(P. - P,V P (z2), ()
PI(2)=P, +(P.—P, )V (2) —%(Pc +P,).

For uneven distribution, they are given by the following expressions:

PO(2)= Py + (B~ PV ()~ L+ B 142
2 5+h1
P?(2)=P, +(P.~ B,V (2). @)
h
o )
PY(2)= P, + (P~ PV ()-SR +B,) —=- |,

where o is the porosity coefficient, and 'V, 1®, /¥ are partial fractions of ceramics, determined by the cor-
responding law (Fig. 1, a-b).

For example, for a power law (P-law, Fig. 1, a) they can be determined according to the following
formulas [9]:

P
Z+— h
y(z)= 2h , ——=<z<h,
h1+5 2
V@ (z)=1, h<z<h,, 3)
h P
Y h
v (z)= 2/1 , hy<z<—
- 2
2
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Fig. 1. Change in the volume fraction of ceramics along the thickness of the plate:
a — according to the power law; b — according to the sigmoid law

Mathematical formulation of the problem within the framework of the refined first-order shear

deformation theory
To analyze the stability and vibrations of the plate, we use the first-order shear deformation theory

[17]. Then displacements u, v, w at any point of the plate are defined as functions of the displacements of the
middle surface uy, vo and wj in the directions of the axes Ox, Oy and Oz and independent turns v, \, of the
transverse normal to the middle surface around the axes Oy and Ox, respectively:
M(X,y,Z,t) = uo(x’y’t)+2\vx(x’y’t) >
v(x’yazat)zvo(x’y’t)_l_Z\Vy(x’y’t); (4)

w(x,y,z,t) =wy(x, y,t) .
Components of deformations are defined as
{ey ={e"}+200"},

where
2
%4_ l[@j a(p)r
ox 2\ ox re ow
5 ov, 1{owY P v = O
v, W R z X
feh={e, 1 &%) = —°+—[—j D= D'y =q "=
oy 2\ ox ox y ow
€ oo 0 R YRR
: ouy, ov, 1(ow\ ow 9Py OO« y
o T 5 o | e o ox
ox oy 2 ox \ oy y
The stresses for each r-th layer are determined according to Hooke's law as:
Si| [01(2) 0n(2) 0 0 0 | |&
Oy On(z) 0Oxn(2) 0 0 0 €y
{8} = Txy = 0 0 Q66 (Z) 0 0 : ny >
T, 0 0 0 0Os5(2) 0 V..
.| L 0 0 0 0 Ou(2) | Ve
E(z E(z
01(2)= 0n(2) = 2 0,(2) =0, (2): Qu(2) = 0ss(2) = O (2) = 50— )
I-v 2(1+v)

Resultant forces in plane N=(N,, N,, N,,)', moments M=(M,, M,, M,,)" and shear forces O=(Q,, Q)"
after integration along the thickness are calculated according to the formulas
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(N} =[Al{e} +[Bl{} s (M} =[Bl{e} +[D1{}; {0} =K Ageters, e} +[Bl{n} (6)

where K is the shear correction factor. In this paper, it is taken as K’=5/6. Note that the elements

Ay, By, Dy; of the matrices [4], [B] and [D] in expressions (6) are calculated by formulas:

A4, = SIZJ.Q(”dZ B, z J-Q(r)zdz D, z J.Q(r) 2dz

rlz rlz

ijs Lijs

where z;=-h/2; z,=hy; z3=h,; z4,=h/2. Values Ql;’) (i,j=1, 2, 6) are determined by formulas (5).

Analytical expressions for calculating elements 4;, B, D; of the matrices [4], [B] and [D] are pre-
sented for two cases of porosity distribution. For easy and brief presentatlon the following auxiliary notation
was introduced

E.+E
a

‘ 1 1
E, =E,—E,; E)) = "5 he=hy =hy ASV=hy+—h; AS2=hy == h.

In this case, the expressions for 4;;, B

1 ,
(g) () p1.2) ). p(.2) _
2(A11 — £, B )a By =

D;; take the following form:

1 :
(&) () p,2) ). p.2) _
(B - ERYY): D =

ijs Pijs

1

12) _ (@) _ () p(1,2)
ALY = ——\ZZ(D“ —-E., B )

Upper indices correspond to the porosity type: 1 — even distribution; 2 — uneven distribution. Formally,
these expressions will be the same for both (P-FGM) and (S-FGM) laws. The expressions for the terms A%,

B, D!® will be different. For the case of the power law (P-FGM), these expressions have the following form:
2 2
h+ ph, B -E hy—hi | AS1® —A4S2®  h(AS1+ AS2) ;
p+1 2 p+2 2(p+1)
" B (ASP —AS2®  h(AS1® +452°) (4814 482) h—h J
cm 3 *

D(&) E o~
t 12 p+3 p+2 4(p+1)

Al(lg) = Emh + ECWI[

Expressions for the terms P{*, B)"?, P{? are given below

h—h; R h -k
P(1>= h—h ;P(1>: i B : P(1>_ 2 1 :
11 ( c) 12 2 13 12 3

1 AS1P —482% 1
P == (h=h); RS’ =(—3 — i +hz)}; (7)

3 3 3 2 2 2
po L[| ASU+AS2 2hASU-hAS2 1( o )
8 4 3 2 4
For the sigmoid law (S-FGM) the expressions for Al(lg ), B{®, D'¥) have the following form:
oo AS2*—AS1P

A{f’):EmmlE (h+h); B® =—E_ (h’ —h2)+————"—
2 2 20p+D(p+2)
3 T AS22[h2+];J—AS12(hl—];J
Dl(lg) =Em_+Ecm - = +
12 3 4 p+D(p+2)

Expressions P{*, P, PY? for both P-S-FG laws have the same form (15).

All other elements Ai», Ags, B1a, Bes, D12, Dgs are defined using the obtained formulas for
Ay, By, Dy, namely:
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1-v
Ay, = VA5 Ay = Ay Ag ZTAU;

B, =VB,; By =B;; By =

I-v
Dy, =VD\y; Dyy =D,y 5 D :TDII'
We assume that a compressive static load pj, acts on the plate, and all external forces change propor-

tionally to the parameter A. The main differential equations for the equilibrium of a plate loaded in the mid-
dle plane have the following form:

ON, ON,, 0’u
=+ -m—=0;
ox oy ot
ON, ON 2
_Xur_y_mla_;’ 0;
ox oy Ot
00, 0 2 o°N,, 0’N 2
Qy+ Qy+ka]\§x+2 =+ —" —mla:‘}zo; (8)
ox Oy Ox ox0y oy ot
M OM 2
2 =+ y_Qx_ Za\gxzoa
ox oy ot

n h.\-+l
where N, N,, N,, are forces that describe the subcritical state of the plate, and m, =z J- pydz,

s=1 Iy

n h.\-+l
m, = z jpg’)zzdz ; pi) is the density of the 7-th layer.
s=1 hy

Equations of motion (8) are supplemented by appropriate boundary conditions.

Solution method

In the general case, the subcritical state of the plate can be heterogeneous. For example, it is regard-
ing to plates with holes, active complex load or plates with a complex geometric shape, etc. So, it is impor-
tant to determine the subcritical state of the plate first, that is, to find the forces in the middle plane
(N} =(N,”, Nyo, nyO)T. Considering that the plate keeps the flat form, the values w, y,, y, can be neglected
when finding these forces. Therefore, we will assume that the subcritical state of the plate is modeled by the
following system of equations

oN, N

oy
x Oy
9
ON, ON,
=+ =0
ox oy
System (9) is supplemented by the following boundary conditions on the loaded boundary part 0€;:
N, (u,v)y=-1; T, (u,v)=0. (10)

Operators N,, T, are defined as:
N, =N, I* + Nypym® +2N,lm; T, = N, (I =m*) + (N, — N,y )im .
where [ =cos(n,0x); m=cos(,0y); and vector 7 is the normal vector to the region boundary. The type of
boundary conditions on the unloaded part of the area is determined by fixing way.
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Problem (9-10) is solved using the Ritz method joined with the R-functions theory [18]. Therefore,
we present a variational statement of problem (9-10), which is reduced to finding the extremum of the fol-
lowing functional:

I(uy,vy) =%j(N°sL + N°8L + Nxvyxy)dQJr J-pb.,(uo cosa+ Vv, sina)ds , (11)
o0,
where
(N} =[Al{eo}"; {0} = {uo,43V0,y3Uo, + Vo) -
Solution of the boundary value problem (9-10) or the variational problem (11) allows to determine the
displacement u, v,, and therefore the forces {N,} in the middle plane, which describe the subcritical plate state.

To find the critical load we use the dynamic approach [19], as it was earlier in Ref. [15, 16]. For this,
it is necessary to find the extremum of the function:

1
I(uavawalilx’\‘rly):EIJ-[N; NL8L+ny’ny+M X +M Xy+MxyXx} +Qx xz+Qy8y +
Q

(N0 )2 + N0 ) + N0 w o, i) mLHI W+ + W)+ (g, +v9,)+ L2 +y2))dQ.  (12)

xy,x

The value of the parameter p,, will be increased until the frequency w; will be a real number. The
magnitude of the critical load N,, is determined by the value of the parameter p;,, which corresponds to the
smallest non-negative value of the square of frequency. Values Iy, [;, I, in the formula (12) are calculated as
the following integrals

3 Zra
Uos Ty 1) = 3 [(0)0,2,27)dz

r=1
Zf’

Taking into account the fact that the mass density of the »-th layer is determined by formulas (1-3),
analytical expressions for calculating /y, /;, I, were obtained:
— for a power law (P-law)

I8 =148 —p P 5 10D = [BE —p D RS 5 18D = IDE —p D RS . (13)
Expressions for 145, IBf, IDf are shown below

IA5 = IA"; IBS = IB\®" ; ID§ = ID{,

2 g2 2 2
Where IAl(igp) = pmh + pcm ( h X pilc J IBl(fp) pcm[hz 2 hl + =L 252 N h(ASl i Asz)j >
p+

p+2 2(p+1)

IDl(fp) - pm

n hy —h'  AS1’ —A4S2°  h(AS1> + AS2*)  hy(AS1— AS2)
pcm + - + *
12 3 p+3 p+2 4(p+1)
— for a sigmoid law (S-law)
IA5 = 145 IBS = IB{$ ; IDf = ID{”,
where 14, IB{#, ID{® are defined as:

2 o2
LA =Pl 5P h): IBE =, I+ S0P
p+hp+

h h
ASz(h +J—ASl(h —J
3 3 3 2 1
DY =p, o il 2 2

12 3 4(p+D(p+2)
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Expressions for A"?, P2, Table 1. Comparison of the critical load with known results
for a square simply supported plate compressed along the whole boundary

P in formulas (13) have the form "
by uniform forces (A1,05/Al, p=2)

). -
Finding the stationary point of Pi;‘;ity a | Method | 1-0-1 1-1-1 1-2-1 2-1-2
Ritz method. The sequence of coordi- P-FGM 0 REM 1'7681 2.3920 2'9830 2.0715
nate functions was constructed using 01 [10] 1.3623 1.9972 | 2.6223 1.6648
the R-functions method [18]. P-1 ) RFM 1.3783 | 2.1980 | 2.0647 | 1.6850
. (even) 02 [10] 0.9303 1.6046 2.2654 1.2621
Numerical results “ [TRFM | 09870 | 1.6451 | 23072 | 1.2573
Test tasks 01 L_[I0] | 1.6660 | 22576 | 2.8409 | 19485
The presented algorithm was ( P-II ) . I[{fé\]/[ }ggg %fﬁi gggg; }zig
tested for the following examples. Hpeven 0.2 : : : :
Let’s assume that simply supported }Ef(l)\]/[ é;g?i ?ég?; ggégé ;2232
FG square sandwich plate compressed S-FGM O M REM T 22441 T 30265 | 36219 | 26560
by forces uniformly along all the 01 101 | 18310 | 26215 | 3501 | 2.2416
sides. The outer layers are made of S-I ) RFM | 1.8541 [ 2.6381 | 32325 | 2.2681
FGM Al/Al,O3, and the core is metal. (even) 02 [10] 1.4224 | 22216 | 2.8861 1.8323
Layer thicknesses and gradient index ] RFM | 14565 | 22496 | 2.8451 | 1.8772
p vary. The ratio of the total thickness 0.1 [10] 2.1429 | 2.8844 | 34716 | 2.5287
of the plate / to the length of the side S-IT RFM | 2.1465 | 2.8962 | 3.4882 | 2.5365
of the square 2a is taken 0.1, i.c. (uneven) 0.2 [10] 2.0326 2.7359 3.3184 2.3937
h/(2a)=0.1. Properties of both materi- REM | 2.0462 | 2.7675 | 33561 | 24182
als for FGM mixture Al/ALLO; are as Table 2. Comparison of the dimensionless parameter
follows [9,17]: Al - E,=70 GPa; of the natural frequency of a square simply supported sandwich
v,=0.3;  p,=2707 kg/m3; ALO; - FG plate with known results, p=2, p=2, h/(2a)=0,1
E =380 GPa; v.=0.3; p.=3800 kg/m’. o | Method | 1-0-1 [ 1-1-1 [ 1-2-1 | 2-12 [ 2-2-1 | 2-1-1
A similar problem was con- P-I, FGM
sidered in paper [10]. Table 1 showsa ~  |_L10] | 10615 | L.I885 [ 1.3024 | 1.1225 | 1.2439 [ 1.1653
comparison of the obtained results for }Ef(l)\]/l (1)8222 Hgg; };ggg 1(1)4112? ifg}g }éggz
a dlm:,ns“’nless critical load 0.1 e 10 5885 T 11271 [ 12549 | 10531 | 1.1880 | 1.1007
Acr = er 5 (where  Ey=1 GPa; 0.2 [10] 0.8787 | 1.0420 | 1.1915 | 1.9549 | 1.1105 | 1.0056
100Eh “ | RFM [ 0.8913 | 1.0551 | 1.2026 | 0.9684 | 1.1228 | 1.0188
pi=1 kg/m’) with the results of paper P-II, FGM
[10] for FGM ALOy/AL p=2. Various o |_[10] | 1.0556 | L1708 [ 1.2842 [ 1.1084 | 1.2270 [ LISI2
layers arrangement schemes are con- " [ REM | 1.0565 | 1.1725 | 1.2864 | 1.0941 | 12277 | 1.1512
sidered ONTINTe) Values 02 |10l | 1021 | 11526 | 12658 | 1.0939 | 1.2097 | L1376
h(l)’ h(Z)’ 1® determine the thickness of RFM | 1.0544 | 1.1581 : }21:7(}];[ 1.0984 | 1.2126 | 1.1383
1 =)
the layers and are equal to 4=/ +h/2; [10] | 11617 | 13119 | 14155 | 12427 | 13594 | 12797
hO=hyhy; B=h/2—h,. O "RFM [ 1.1588 | 1.3096 | 14137 | 12401 | 1.3573 | 1.2774
Table 2 shows a comparison 0.1 _[10] [1.1039 12595 | 1.3718 | 1.1862 | 1.3113 | 1.2262
of the obtained results for the natural " | RFM [ 1.1105 | 1.2676 | 1.3792 [ 1.1942 | 1.3189 | 1.2339
2 . [10] 1.0315 | 1.2011 | 1.3256 | 1.2076 | 1.2580 | 1.1632
frequency A=m;)\/§° of simply 02 "RENT [T.0467 [ 12173 | 13399 | L1371 | 1.2732 | L1797
0 S-II, FGM
supported plate with outer layers made 0.1 _[10] [T.1615 [ 12992 [ 14001 [ 1.2340 [ 1.3470 [ 12712
of FGM (AL, Os/Al, p=2 ), with similar ’ RFM | 1.1641 | 1.3029 | 1.4046 | 1.2374 | 1.3502 | 1.2740
results of the paper [10]. 0.2 [10] 1.1620 | 1.2864 | 1.3859 | 1.2255 | 1.3346 | 1.2628
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Stability and free vibrations of plates with a complex geometric shape

Comparison of data in the Tables 1 Vi
and 2 indicates a good agreement between the : l {
obtained results and those known in the litera- \
ture. This fact allows to consider plates with a —
complex geometric shape with cutouts, as
shown in Figs. 4 and 5. 0 —
The geometric parameters are taken r
as follows: b/2a=0.75; ai/2a=0.35;
b1/2a=0.15; R/2a=0.2; h/2a=0.1.
The equation of the boundary of this

region o(x, y)=0 is constructed using the R- Fig. 4. T hf’ shape *
functions method, where of a sandwich plate Fig. 5. Scheme of plate load

L4

T

2b

o(x,¥) = (fi Ao S2) Ao (fs Ao Ja) Ao (s Ao f6) Ao (f7 Ao Ss)- (14)
2 2

Functions f;(x,y), (i = 1,_8) in expression (14) are determined by the following inequalities:
a’—x* b* —y? al —x y? —b}

R’ —(x—a)’ - (y-b)’
= >0; f, = >0; = >0; =—2>0; =
f="0 f=7, S 2a, Js 2b, fs 2R

>0;

2 2 2 2 2 2 2 2 2
f6:R (x+a) —(y->b) 20;f7=R (x—a)"=(y+b) 20;fng (x+a) —(y+b) >0,
2R 2R 2R
where operations A,,v, have the following type: f, A, f. = f, + f. =+ /¢ + /. is the R-conjunction that de-

scribes the intersection of regions defined by analytic inequalities f, 20, f. >0;

fivo fu=fi+ [+ f7+ 7 is the R-disjunction that describes the union of areas defined by analytical ine-
qualities f, >0, f, >0.
Two types of boundary conditions are considered: Table 3. Critical load for a porous plate
—BC-I — plate that is clamped along the sides of a complex geometric shape

x=*a, y=*b, that is, on the parts of the border where compres-  with boundary conditions BC-I, p=2; AVALLO;
sive forces are acting, the remaining part is free; Law | o | 1-0-1 | 1-1-1 | 1-2-1 | 2-12

—BC-1I- plate that is clamped along the whole contour. 0 |4.6550 | 6.3150 | 7.8356 | 5.469

Table 3 shows the value of the critical load p.1 [(0.1 | 3.6450 | 5.3540 | 6.9785 | 4.474

ﬁ :L for different schemes of thickness layers and 0.2 | 2.6330 | 4.3840 | 6.1112 | 3.465
" 100E H popp |0-1 [ 43935 | 5.9800 | 7.4950 | 5.162
for different laws of porosity distribution at a fixed value of 0.2 | 4.1315 | 5.6420 | 7.1550 | 4.847

0 | 59157 | 7.9440 | 9.4580 | 6.990
S-I | 0.1 4.9095 | 6.9470 | 8.6050 | 6.002
0.2 | 3.8959 | 6.0385 | 7.7530 | 5.005
0.1 ]5.6702 | 7.6111 | 9.1221 | 6.681
0.2 ] 5.3928 | 7.2755 | 8.7850 | 6.371

the volume fraction of ceramics p=2.

Figs. 6, a—b show the influence of the gradient index
on the natural frequencies of vibrations of sandwich plates for
different schemes of the layers arrangement with even and  S-1I
uneven distribution of porosity, when the value of the poros-
ity coefficient is 0=0.1.

Comparing Figs. 6, a and 6, b, the following conclusions can be drawn: in both cases, when the gra-
dient index increases, the frequencies decrease. Starting with p=5, the decrease is quite smooth, that is, the
influence of the gradient index will be insignificant; the highest values of frequencies have the plates in the
case of the 1-2-1 scheme, both with even and uneven distribution of porosity, which has a good agreement
aligns well with the physical sense content. In this case, the content volume of ceramics will be the greatest,
and the plate will be the most rigid. For the sigmoid law (Fig. 6, b), the layers thicknesses have a more sig-
nificant effect on the frequencies than for the power law (Fig. 6, a).
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Fig.7  presents
graphs of frequency be-
havior for plates that are
clamped along the whole
contour for two laws of
volume fraction distribu-
tion of P-FGM and S-
FGM ceramics, provided
there is no porosity, o=0.

The effect of the
porosity coefficient on
the natural frequencies of
such plates for the ar-
rangement of layers
(1-1-1) is shown in
Fig. 8. As can be seen,
the change in the poros-
ity coefficient within the
selected interval 0<0<0.2
has almost no effect on
the behavior of the
clamped plate for both
sigmoid and power laws.
For the power law, this
influence is more consid-
erable, although it is also
insignificant.

Figs. 9, a-b show
the graphs of frequency
behavior for porous plates
that are clamped along
the whole contour (BC-II)
with uneven porosity dis-
tribution for two P-FGM
and S-FGM laws of
changes in the volume
fraction of ceramics: a —
0=0.1; b — 0=0.2). Vari-
ous layers arrangement
schemes are considered:
1-0-1; 1-1-1; 1-2-1; 2-1-2.
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Fig. 9. Natural frequencies of a porous sandwich plate clamped

It can be seen from the given graphs that the frequencies have greater values with the sigmoidal law
of change of the effective properties of the material for all considered schemes of thickness values. The gra-
dient index values from 0 to 5 have the most significant effect on the reduction of natural frequencies.
Changing the porosity parameter does not significantly affect the frequency values. This can be observed

more clearly from the graph in Fig. 8.
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Prospects for further research
From the point of authors’ view, the further studies of the considered topic can be devoted to the de-
velopment of the proposed methods using the higher order shear deformation theory.

Conclusions

An numerically analytical approach for studying the stability and vibrations of porous FG plates,
which is based on the use of the R-functions method and variational methods, is proposed.

It is shown and confirmed by examples that the developed method allows to study the FG porous
sandwich plates taking into account the heterogeneous subcritical state and complex geometric shape.

The influence of the gradient index and different porosity distribution laws (P-FGM and S-FGM) on
natural frequencies and critical load was studied.

Analytical expressions for calculating the effective properties of FGM for even and uneven porosity
distribution for sigmoid and power laws were obtained.

The stability and vibrations of a plate with a complex geometric form compressed by forces in the
middle plane were analyzed.
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AHaJi3 CTIHKOCTI Ta KOJIMBAHb MOPUCTHX CTeNleHeBUX TA CHTMOBH/IHUX
(pyHKIiOHATBHO-TPAlIEHTHUX CEHBIY-TNIACTHH MeTOA0M R-dyHkmii

JI. B. Kypna, T. B. lllmaTko, I'. b. Jlinnuk

HamionansHuit TEXHIYHUN YHIBEPCUTET «XapKIBCHKUH MOTITEXHIYHAN 1HCTUTYT»
61002, Ykpaina, M. XapkiB, Bya. Kupnudosa, 2

Y oaniti pobomi enepwe 3acmocosano memoo R-@yukyitl 048 O0CHIONHCEHHS CMIUKOCMI MAd KOAUBAHD
nopucmux @yHKYioHAIbHO-2PAOIEHMHUX CEHOBIU-NIACMUH 3i CKIAOHOI0 2e0MempuyHoto opmoio. Ilpunyckaemscs, ujo
308HIWHI WAPU NAACMUHU BU20MOBIEHO 13 (DYHKYIOHATbHO-2PAOIEHMHUX MAMEPIANie, a 3anosHi08ay € I30MponHUM, d
came kepamiunum. Jughepenyianvhi pieHAHHSA PYXY 00€pPHCAHO 3a OONOMO2OI0 36UYAUHOI 3CY8HOI Oedopmayitinoi
meopii neputoco nopaoky iz sadanum koeiyiecnmom zcysy (FSDT). Hocnioaceno 06i mooeni po3nodinenus nopucmocmi
32i0n0 i3 cmenenesum (P-law) i cuemosuonum (S-law) saxonamu. OOdepoicani ananimuymi eupazu Oas 0OYUCTEHHS
eheKmuUBHUX ~ MeXaHIYHUX — XAPAKMepucmux  QYHKYIOHATbHO-2PAJICHMHUX — Mamepianie npu  piGHOMIpHOMY U
HEPIBHOMIDHOMY pPO3NOOINeHH] nopucmocmi. 3anpononosanuii nioxio epaxogyc mou axm, wo OOKPUMUYHUL CAH
NAACMUHU Modice OYymu HeoOHOPIOHUM, | MOMY nepul 3d 8ce GUIHAUAIOMbCA HANPYHCEHHA 8 CepeOUHHIl NIOUWUHI
NIACMUHU, A NOMIM PO38 A3VEMbCA 3A0aud HA 1ACHI 3HAUEHHS 3 MeMmOoI0 3HAXOONHCEHH KPUMUYHO20 HABAHMANCEHHS.
Jlna eusnauenHs KpumuuHo20 HABAHMANCEHHS i YACMOM NAACMUH 8uKopucmano memoo Pimya paszom i3 meopicto R-
¢ynxyin. Po3pobiaeni areopummu i npocpamme 3abe3neyenHs nepesipeni Ha Mmecmosux Npukiaoax i NopieHsaHi 3
BIOOMUMU PE3YTbMAmMaml, 00ePAHCAHUMU 3a OONOMO2010 THUWUX Memodis. Bupiuweno psao 3a0au cmilkocmi i KOIUBAaHb
nopucmux QyHKYioHaAIbHO-2PAOIEHMHUX CEHOBIU-NAACMUN 3i CKAAOHOIO0 2e0MEMPUYHOIO (BOPMOI0 O PI3HUX CXeM
VKIAOAHHS Wapie, PisHUX KPatosux yMO8 i 3aKOHI8 PO3N0OiNeHHs HOPUCTNOCHII.

Kniouosi cnosa: cmiiikicmov, KoausamHs, CeHOBGIY-NAACMUHU, NOPUCMICMb, QYHKYIOHATbHO-2PAOIEHMHUL
Mmamepian, meopis R-gpyukyiil, memoo Pimya.
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