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A nonlinear dynamic system with a finite number of
degrees of freedom, which describes the forced oscilla-
tions of a beam with two breathing cracks, is obtained.
The cracks are located on opposite sides of the beam.
The Bubnov-Galerkin method is used to derive the
nonlinear dynamic system. Infinite sequences of peri-
od-doubling bifurcations cause chaotic oscillations
and are observed at the second-order subharmonic
resonance. Poincaré sections and spectral densities
are calculated to analyze the properties of chaotic
oscillations. In addition, Lyapunov exponents are cal-
culated to confirm the chaotic behavior. As follows
from the numerical analysis, chaotic oscillations arise
as a result of the nonlinear interaction between cracks.
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Introduction

Oscillations of shafts and beams with cracks are a serious problem for the energy industry. For example,
cracks appear on compressor blades and turbine shafts, which changes the dynamic characteristics of the struc-
ture. Oscillations of structures with cracks are mainly nonlinear [1]. Nonlinear oscillations of beams with cracks
were analyzed by Christides and Barr [2]. They derived a partial differential equation of beam oscillations using
the extended Hu-Washizu variational principle. In turn, Shen and Pierre [3] propose crack and displacement
functions to describe oscillations of a beam with a crack. A system with one degree of freedom describing oscil-
lations of a beam with a crack was obtained using the Christides and Barr beam theory [4, 5]. A detailed deriva-
tion of the partial differential equation describing oscillations of a beam with an open crack is given in [6]. Non-
linear shapes of a beam with cracks were considered by Chati, Rand and Mukherjee [7], and geometrically non-
linear oscillations of a beam with a breathing crack were considered by Carneiro and Ribeiro [8]. The crack is
described by the delta function in the expression for the bending stiffness in [9]. Oscillations of a beam with an
arbitrary number of cracks are studied by Caddemi, Cali and Marletta [10], and oscillations of a beam with geo-
metric nonlinearity and an open crack are studied by Bikri, Benamar and Bennouna [11]. In [12], a nonlinear
dynamic system is derived to describe oscillations of a rotor with a crack. A beam with several breathing cracks
is studied by Sinha, Friswell, Edwards [13]. The natural frequencies and natural shapes of a beam with several
open cracks are analyzed using the Euler-Bernoulli beam model by Stachowicz and Krawczuk [14]. The crack is
taken into account by additional boundary conditions. Forced oscillations of beams with a transverse crack were
studied by Plakhtienko and Yasinskii [15]. In [16], an asymptotic procedure based on the method of many scales
was proposed for the analysis of forced oscillations of a beam with a breathing crack, and in [17], bifurcations of
periodic oscillations of a beam with two cracks located on one side of the beam were numerically analyzed. The
finite element method was used to calculate the nonlinear dynamics of beams with a breathing crack in [18-21].
The combination resonance of nonlinear oscillations of a beam is considered in [22]. The application of the
Melnikov function to the analysis of subharmonic oscillations of a beam is studied in [23]. Flexural-flexural-
torsional geometrically nonlinear oscillations of beams are studied in [24].

In this paper, a model of nonlinear oscillations of a beam with two breathing cracks located on oppo-
site sides of the beam is derived. Two contact parameters are used to describe the crack breathing. A nonlin-
ear dynamic system with a finite number of degrees of freedom is derived to describe the beam oscillations.
Nonlinear oscillations in the region of the fundamental and second-order subharmonic resonance are ana-
lyzed using parameter extension. The properties of chaotic oscillations are considered. As follows from the
numerical analysis, chaotic oscillations arise as a result of nonlinear interaction between cracks.
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Problem statement and basic equations

Nonlinear bending oscillations of a cantilever beam | ¥
with two breathing cracks are considered. The beam has a

=
rectangular cross-section, and two breathing cracks are locat- | al | |:| IZd
ed on its opposite sides (Fig. 1). - A *

Each of the cracks can be opened or closed. If a crack is G R
opened, the stiffness changes. To describe the nonlinear oscilla- | <~ 2b
tions of the beam, a mathematical model that takes into account
the local change in stiffness near the cracks is used. The crack is X,

described by delta functions in the expression for the bending
stiffness, and the oscillations of the beam with breathing cracks
are described by a partial differential equation [17]

Fig. 1. Cantilever beam with two cracks

Eolo{[l—zkﬁ/,ﬁ(x—xa)]} +mw = p(x,1), (M

XX
2
w . . . . .
where Pl =W}y ; wis the transverse displacement of the beam; m is the mass per unit length; Eoly is the
X

bending stiffness of the beam without cracks; p(x, 7) is the external transverse force per unit length; d(x—x.;) is
the delta function; x.; is the longitudinal coordinate of the crack; v; is the dimensionless damage intensity pa-

rameter [25]; k; is the contact parameter. If the crack is open, then k=1, and if closed, then £=0.

2
According to [17], crack breathing is described by the sign g—zv The condition for open-
X

ing / closing of a crack located at a point (x=x;) takes the form
L < 0k =1;

"
w
X

w" >0; k, =0.
X=Xe 1

Right crack opening/closing condition

w" e, 0,k =1;

w _, <0k, =0.
The following four phases of beam motion are observed:
— the left crack is closed and the right one is open (ki1=0; k>=1);
— the left and right cracks are closed (ki=k>=0);
— the left crack is open and the right one is closed (k1=1; k>»=0);
— the left and right cracks are open (ki=k>=1).

The Bubnov—Galerkin method is applied to equation (1) to derive a nonlinear dynamic system with a
finite number of degrees of freedom. In this case, the transverse displacements of the beam take the form

W= g, (0%,
i—1

where W, (x) = (1-k )k, W3y (x) + (1= k YA — k) Wy o (x) + by (L= ko W0 () + ki, W (x) 5 WD ()5 Wl (%)
Wl(f)) (x); Wlff)(x) are eigenforms of the four phases of beam motion, considered above. Eigenforms Wk(l’k)2

are marked with contact parameters k1 and k». For example, eigenform WO(,’? describes the oscillations of the
beam when the left crack is closed and the right crack is open.
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As a result of using the Bubnov—Galerkin method, a nonlinear dynamical system with a finite num-
ber of degrees of freedom is obtained

Z[M_/i(q)éii +Rj[(q)q[:|:ﬁj(t); J=L . N, 2)
inl

Ly L, L, 2 !
where A1, (q)=m j W ()Y, (0)dxs B(1)= j PEOY, (D)dxs R, (q) = Eql, H[l = kv 3(x - x”.)}\y;'(x)} W (x)dx s
0 0 0 i=1
q=(q1, ..., gne) is the generalized coordinate vector.
Matrix Rji(q) elements are calculated as follows

LIJ
R, (q) =&m [ W,(x)¥, (x)ix,
0

where ®, are natural frequencies at the corresponding phase of the structure's motions, which is determined
LIJ

by the contact parameter. Elements of matrix Ri(g) and matrix M;(g) contain integrals j W, ()Y (x)dx,
0

which depend on the phases of the structure's motion as

L,
[ o (odx; G(x.1,9) < 03 Glx009) > 0;
0

L,
[ Com ) (odx; Gx.1,9) < 03 Gz 9) < 0;
0

f ¥ ()W (x)dx = (3)

Ly

[ W) (s G(x.1,0) > 03 Gx,.9) > O
0

L,
[l (odx; G(x.,9) > 0 Glx.0) < 0;

WNs j=1,...,N.,

(1)
where G(x,q) = ZT(X)CI,U)~

i=1
The eigenforms of a beam with two closed cracks participate in relations (3). In this case, they enter
equation (3) and satisfy the following orthogonality conditions:

k=0, 1; k=0, 1;i=1, ..., Ne; j=1, ..., N, @)

l]’

(kiky)
jWk(QZW;ﬁda rs

where ; is the Kronecker symbol. Note that the orthogonality condition (4) satisfies all four phases of the
structure's motions considered above.

Taking into account the internal friction of the beam material, the nonlinear system (2) takes on the
following matrix form:

MG+ D+ R™g = FOD(0); G(x,1.q) < 05 Glx,0,q) > O;

MG+ Dg+RMVq=F(1); G(x,,q) < 0; G(x,,,9) < 0;
MO+ D+ ROVg = FOV(0); G(x,1.) > 0; Glx,) > 0
MG+ Dg+R""q=F"(t); G(x,4,9) > 0; G(x,,,9) <0,

)
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1 1 1 1
J mn;l,l) p] ) J mn(jl,()) p] ) J ) mTC.(/O,l) p] J mnB0,0) p]

Thus, the motions of the structure satisfy the ordinary differential equations (5).
The dynamic system (5) is rewritten in terms of the following dimensionless variables:

q . 1
y=— Tzw(o})t,

2d
where 0)(01)0 is the first natural frequency of a beam without cracks; 24 is the height of the beam cross-section
(Fig. 1). The dynamic system (5) with respect to dimensionless variables and parameters takes the form:

My"+ Dy + Ry = F(1); G(x,1,y) < 0; G(x,5,) > 0;

M0y"+ Dy + Ry =F*0(1); G(x,1,9) < 0; G(x,. ) < 0;
M®Vy"+Dy'+ Ry = F " (1); G(x,, ) > 0, G(x,,) > 0;
M*Py"+ Dy + R0y = FOO(1); G(x,,,y) > 0, G(x,,, ) <0,

(6)

(il !iZ) (il!iZ)
];d <1)(2t); = l()l) ; R(ll’lZ)(t)zR m2
®9,0 ®9,0 9,0

The frequency response of the nonlinear system (6) is analyzed further. The stability and bifurcations
of periodic oscillations are numerically estimated. The parameter extension method is used to calculate the
frequency responses. The theoretical justification of this method is given in [26, 27].

The system of variational equations derived from system (6) is obtained for the analysis of the stabil-
ity and bifurcations of periodic oscillations [28]. Lyapunov exponents are calculated from numerical solu-
tions of the variational equations. The stability and bifurcations of periodic motions are determined from the
calculations of multipliers [28]. The results of numerical modeling of the stability and bifurcations of period-
ic motions are considered in the next paragraph.

i=1,2; ih=1,2.

where y' = Z—y; FaR)(f) =
T

Numerical analysis of nonlinear beam oscillations

The nonlinear oscillations of a cantilever beam with two breathing cracks were numerically analyzed
(Fig. 1). The following numerical values of the geometric and physical parameters of the beam were select-
ed: E=2.1x10" Pa; p=7800 kg/m®; Ls=0.117 m; x.=0.015 m; 5=0.005 m; d=0.005 m; a=0.8-d.

Forced oscillations are excited by periodic movements of the clamp

p(x,t) = HQ? sinQt ,

where the amplitude of periodic movements of the cantilever clamp is H=0.003-d. Two cracks have the fol-
lowing longitudinal coordinates x.1=0.015 m; x:2=0.5-Ls.

A numerical analysis of | A
the nonlinear dynamic system | .. on -
1

(5) was performed. The parame- iia
. . . . 020 o
ters of periodic oscillations were m/

1 - o1s

numerically analyzed as func PD, . PD,

tions Q. To obtain these func-
tions, the method of continua-

tion by parameter [17, 26, 27] is | ** bl oxe

used. The multipliers of periodic | o555 o5 51 0o e o N
oscillations [28] are calculated a b

to analyze their stability and

bifurcations. Fig. 2. Frequency response of a cantilever beam with two cracks
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The frequency response of the main resonance is shown in A
Fig. 2, a. The amplitude dependence A, of oscillations yi(t) on fre- o8
quency Q is shown in Fig. 2, a. Two period-doubling bifurcations
PD; and PD; are shown in Fig. 2, a. At these bifurcation points,
stable periodic oscillations become unstable. The frequency re-
sponse on a small scale is shown in Fig. 2, b. Stable and unstable

oscillations are shown by solid and dashed curves, respectively. oon PD,
Another period-doubling bifurcation is observed at a fre- ..
quency of £ = 1.75  Then the oscillations with a period 71:=21/Q PD, i T3 o8 TR

lose stability and oscillations with a period 7=2T. These oscilla-

. .. Fig. 3. Frequency response of second-
tions are shown in Fig. 3. & guency resp 4

order subharmonic oscillations

Second-order subharmonic oscillations (Fig. 3) undergo period-doubling bifurcations, which are de-
noted by PD; and PDs.

Steady motions between the bifurcation points of the period-doubling are analyzed (Fig.2 and
Fig. 3). Direct numerical integration of the dynamical system (5) is performed. The oscillations of the system
are considered as transient processes on the time interval te[0; 1000-77]. Poincaré sections [29] are calculat-
ed for the analysis of steady oscillations. After that, the transformation of the subspace of the dynamical sys-

tem (6) into itself is analyzed. y(7),..., vy (), 7;(0)ss Yy (1) % € Z , where Z is the set of integers. This
1

subspace is denoted as:
. T
X= ()ﬁa---:yzv(,,J’n---yzv(,)‘FEZ .
1

The Poincar¢ section defines the transformation in this way X—X.
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Fig. 4. Poincaré sections of chaotic oscillations

at the following values of the perturbation frequency: Fig. 6. Spectral densities y:(t)
a—0Q=1.792; b - Q=1.79225; ¢ — Q=1.7925; d — Q=1.793 at load frequency Q=1.7925
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Steady oscillations between period-doubling bifurcations PD; and PD: are analyzed. These bifurca-
tions lead to an infinite sequence of period-doubling bifurcations, resulting in the generation of chaotic oscil-
lations. Fig. 4 shows the Poincaré cross sections of chaotic oscillations at frequencies: Q=1.792; Q=1.79225;
0=1.7925; Q=1.793. Chaotic oscillations y»(t) at Q=1.792 are shown in Fig. 5.

The spectral densities of chaotic oscillations were numerically analyzed. The spectral density at
0=1.7925 is shown in Fig. 6. Spectral densities consist of a set of discrete components, which are blurred
when ®~6, which confirms the chaotic nature of the movement modes.

To analyze chaotic motions, the
spectrum of Lyapunov exponents \; .
i=1, 2, ... as calculated. To calculate these .
values, the variational equations are solved
numerically and Gram-Schmidt orthogo-

0.000

0,005
At

-0.010

nalization is performed. This procedure for a5
calculating the Lyapunov spectrum is well o020
known [28]. The behavior of the first Lya- o025
punov exponent A; in time at Q=1.792 is s m W R &%

shown in Fig. 7. As follows from this fig-
ure, the first Lyapunov exponent has a
positive value. Therefore, the motion of
the system at 2=1.792 is chaotic.

Fig. 7. Behavior of the first Lyapunov exponent in time at 2=1.792

Table 1. Lyapunov spectrum
Q }\.1 }\.2 )\43 )\4

The Lyapunov spectrum was cal- | =55 50——7750 70513 707x107 | 26.033<10° | 8.688~10°

culated for different values of the load | 75657517 561570+ [ 3.324x107 | 5.999x107 | -8.804x10°

frequencies €. The first four Lyapunov | = 56>50 74 330x10 | 4.142x10° | -6.013x10° | -9.720%107

exponents are given in Table 1. Thus, | 775300 [4.126x107 | -3.198x107 | -5.989x107 | -8.775x10°

they are positive, which confirms the
chaotic nature of the oscillations.

Conclusions

Forced oscillations of a beam with two cracks located on opposite sides of the beam are described by a
nonlinear dynamical system with finite degrees of freedom. This nonlinear dynamical system is obtained by
applying the Bubnov—Galerkin method to the nonlinear partial differential equation of motion of the system.

The motions of the beam consist of the following four phases: the left crack is closed and the right
one is open; the left and right cracks are closed; the left crack is open and the right one is closed; the left and
right cracks are open. During one oscillation period, four phases of the system motions occur sequentially.
The nonlinear properties of the system are realized by transitions between the four phases.

In this cracked beam, infinite sequences of period-doubling bifurcations and chaotic motions arise.
The sequence of period-doubling bifurcations and chaotic motions are observed at subharmonic resonance.
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Ompumano HemHilHY OUHAMIYHY cUCeMy 3i CKIHYUEHHUM YUCIOM CMYNEHI8 c80000u, KA ONUCYE GUMYUEH]
KOUGAHHS OanKu 3 08oma ouxaiouumu mpiwunamu. Tpiunu po3mawosamni Ha RPOMULEHCHUX CMOPOHAX Oanku. [[na
6UBCOCHHS HEeNIHIUHOI OUHAMIYHOIL cucmemu 3acmocosano memoo bybonosa-Ianvopkina. Heckinuenni nociioosHocmi
bihyprayii n00BOEHHs nepiody BUKIUKAIOMb XAOMUYHI KOJUBAHHS | CHOCMEPIealombCsi npu CyO2apMOHIYHOMY De30HA-
HCI Opy2o2o nopsioky. [{na ananizy eiacmusocmeri XaomuyHux KOJIUGAHb po3paxosano nepepizu Ilyanxape i cnekmpa-
abHi wiinenocmi. Kpim moeo, noxaszuuxu JIanynoea po3paxogyomscs 0isi NIOMEepOdCeH s Xa0mu4Hoi nogedinku. Ak
BUNTIUBAE 3 YUCETLHO20 AHANI3Y, XAOMUYHI KOTUBAHHS BUHUKAIOMb GHACIIOOK HENIHIUHOT 83AEMOOIT MIdIC MpIWuHaMuL.

Knrouosi cnosa: 6anka 3 mpinjunamu, suMyuieHi KOIueanHts, 0ipyprayis nOOBO€EHHs nepiody, XAOMUYHI KOJU-
6aHH3, NOKA3HUK JIAnyHosa.
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