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The sandwich conical shell with elastic honeycomb structure, which
is studied in this paper, is manufactured by additive technologies
and has three layers. The honeycomb structure is made of ULTEM
material, and the upper and lower face layers of the structures are
made of carbon fiber. Each layer of the structures is an orthotropic
material and satisfies Hooke's law. Thanks to the homogenization
procedure using the finite element method, we will obtain an
equivalent orthotropic medium instead of the honeycomb structure.
The elastic properties of this medium satisfy Hooke's law. The
modified high-order shear theory is used to model the deformation
of the structures. The deformations of each layer of the structures
are described by five variables, which include three projections of
the displacements of the median surface and two angles of rotation
of the normal to the median surface. To calculate the displacements
of the layers, boundary conditions for stresses and boundary condi-
tions that describe the continuity of displacements at the layers’
boundaries are used. The vibrations of a three-layer sandwich shell
are expanded into basis functions that satisfy the kinematic bound-
ary conditions. The Rayleigh-Ritz method is used to study the vibra-
tions. The vibration parameters of structures are calculated from
the eigenvalue problem. To verify the obtained results, the natural
frequencies are compared with the data of finite element modeling.
As follows from the calculations, the natural frequencies obtained
by the Rayleigh-Ritz method and the finite element method are
close. The spectrum of natural frequencies is very dense. The mini-
mum natural frequency of vibrations is observed when the number
of waves in the circular direction is equal to one.

Keywords: sandwich conical shell, honeycomb structure, linear
vibrations.

Thin-walled honeycomb sandwich structures are used in aircrafts, rocket launchers, etc. They have

high strength and rigidity at low weight. Much effort has been put into studying the mechanical properties of
sandwich structures. Nonlinear vibrations of a composite shell of double curvature with an elastic middle
layer and a magnetorheological layer are studied in [1]. Nonlinear vibrations of a composite double curvature
sandwich shell with a piezoelectric layer are studied in [2]. To obtain a mathematical model, the high-order
shear theory and the geometrically nonlinear von Karman deformation theory are used. The nonlinear dy-
namic behavior of a sandwich shell of double curvature with an auxetic honeycomb structure with a negative
Poisson's ratio is studied in [3], and the geometrically nonlinear vibrations of a closed cylindrical sandwich
shell are studied in [4]. Nonlinear vibrations of a cylindrical panel on an elastic foundation under impact
loading are studied in [5]. The upper and lower layers are made of a nanocomposite, and the sandwich panel
is made of an auxetic honeycomb structure and the face layers are made of a nanocomposite.

Nonlinear equations of motion of a double-curvature sandwich shell with honeycomb structures under
transverse loading are derived using Hamilton's variational principle and the Reddy’s third-order shear defor-
mation plate theory [6]. Nonlinear vibrations of a multilayer composite shell in a hydrothermal environment are
considered in [7]. A nonlinear finite element approach is used to analyze geometrically nonlinear vibrations of
sandwich plates with a functionally gradient honeycomb structure [8]. Geometrically nonlinear forced vibra-
tions of a rectangular sandwich panel with a honeycomb structure are described by a system of nonlinear ordi-
nary differential equations, which are solved by the homotopy method [9]. The homogenization method is used
to analyze geometrically nonlinear vibrations of sandwich panels in [10].
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In this paper, linear vibrations of a sandwich conical shell with a honeycomb structure manufactured
using additive technologies, as well as with upper and lower layers of carbon fiber, are studied. The stressed
state of each layer is described by five variables, which include three projections of displacements of the me-
dian surfaces of each layer and two angles of rotation of the normal to the median surfaces of each layer. To
obtain the equations of vibration of structures, the theory of high-order shear and the condition of continuity
of displacements between layers are used. Using the Rayleigh-Ritz method, the analysis of linear vibrations
is reduced to an eigenvalue problem, from which the parameters of linear vibrations of multilayer structures
are obtained. The properties of linear vibrations are studied.

Problem formulation and basic equations

The three-layer sandwich conical shell is shown in
Fig. 1. The middle layer of this shell is a honeycomb struc-
ture, which is manufactured using additive technology from
ULTEM 9085 material. The upper and lower layers are made
of carbon fiber. The material of all three layers is orthotropic
and satisfies Hooke's law.

Three curvilinear coordinate systems are used to de-
scribe the deformation of each layer: (s,0,z), (s.,0,z.),
(Ss, 0, zp), where 0 is the circular coordinate; z,z.,z, are
transverse coordinates; s;, S, S, are longitudinal coordinates.

Fig. 1. Sandwich conical shell (a)
and honeycomb structure cell (b)

By applying the homogenization procedure [11], we obtain an equivalent orthotropic medium in-
stead of the honeycomb structure. Hooke's law for this medium has the following form:
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where 6,9, 6409, 6.9, 60, 6., 646, €4, €66, €., €07, £, £ are elements of stress and strain ten-

sors. The upper and lower face layers are made of carbon fiber composite. Hooke's law in this case takes the

following form:
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Displacements of the upper and lower layers 1,?, u,?, () (i=t, b) expand like this:
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where u”, v, w are projections of displacements of pomts of the median surface of layers; ¢,”, ¢, are
angles of rotation of the normal to the median surface; y,”, y,"” are unknown functions that are being calcu-
lated. Projections of the displacements of the homogenized layer u,”, 1,, u;') have the form

W =1 42,00 + 22yl + 22410
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ul® =w 4z w4 22wl 3)

where 4@, v, w9 are projections of displacements of the median surface of the homogenized layer;

01, 0, are angles of rotation of the normal to the median surface; y;‘”, y,'”, 119, v, w,”, w,© are un-

known functions that are being calculated.
Boundary conditions for the stresses of the upper and lower layers are used in the form

=o: o, =0 @

where #,, h, are thicknesses of the lower and upper layers. The continuity of displacements at the layer
boundaries is described by the following boundary conditions:

u,(z, =—0.5h)=u.(z,=0.5h); v,(z,=—0.5h)=v.(z,=0.5h,);
w,(z, ==0.5h)=w.(z, =0.5h,); u,(z,=0.5h)=u.(z.=-0.5h.);
v, (z, =0.5h)=v.(z, =-0.5h.); w,(z, =0.5h,)=w.(z, =—-0.5h,), (5)

where £, is the thickness of the homogenized layer.
The parameters of the expansions (2, 3) are found from the boundary conditions (4, 5) as follows:
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The deformations and displacements satisfy the following equations [12]:
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Equations (2, 3) are introduced into (6). As a result, the following asymptotic expansions for the
components of the strain tensor are obtained:
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where the values of the components of the expansions are not given for brevity
The potential energy of the upper and lower layers has the following form:
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where 7, is the volume of the layer i; 4; is the plane of the median surface of the layer.
The potential energy of the homogenized layer has the following form:
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The kinetic energy of the shell layers can be given as
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where p; is the density of layer materials; u .
t

Linear vibrations analysis
The Rayleigh-Ritz method is used to analyze linear vibrations of a thin-walled structure. In this case,

the force boundary conditions of the structures are not taken into account. However, the kinematic boundary

conditions are necessarily taken into account. A conical shell clamped at both ends has the following bound-

ary conditions:

Y= M(I)Lss‘” = (pfl)L[:S<1> =@

§;=S;

_ 0
w =V

§;=S;

S‘.=s§1>

w

_ o — o
@ =P L.:sm =

S;=S;

=y L =05t b, (10)
The vibrations of thin-walled structure have the following forr;l:
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where n is the number of circular waves. Functions Ui(§), V&), W(&), X( &), Y(&) (11) satisfy the boundary
conditions (10). They have the following form:
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where ¥ (€), ¥(©), ¥I(©), ¥V (©), ¥ (@) are basic functions; U,", V7, W,%, X, ¥, are

unknown parameters to be calculated.
Potential energy of a sandwich shell Us, has the following form

Us=U,+U_+U,.
The kinetic energy of thin-walled structure can be given as
I, =T,+T,+1,.
To study linear vibrations, we will use Hamilton's principle
2m

J'(UZ—TZ)dt—min. (13)
0
Equations (11, 12) are used in energies (7-9) and double integrals are calculated. As a result, we obtain

Uy =U(A)cos?(ot) ; Ty, =T (A)sin’ (o), (14)
where A= (U f”,...,U ](\j) U 1("),..., Y A(f;)) is the vector of unknowns. The dimension of this vector is
N.=3(N,+N,+N, +N, +N,).Functions U (A4, T (A) are a quadratic form with respect to the elements

of the vector 4. Equations (14) are used in (13). Taking this into account, we obtain
U(A)—&*T(A4)—> min. (15)
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Condition (15) is transformed into a system of N« algebraic equations

0
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Equations (16)are transformed into an eigenvalue problem, from which the eigenfrequencies and vibra-

tion modes are found.

Results of numerical simulations

The shell is clamped at both edges

In this section, we consider a shell clamped at both
edges. The boundary conditions have the form (10). Then the
basis functions of the expansions (12) are as follows:

Table 1. Natural frequencies of a clamped shell

¥©) = @) =" @)= ©) =¥ )= sin[’"ﬂ .

The honeycomb structure is manufactured using FDM
additive manufacturing technology from ULTEM 9085 mate-
rial. The mechanical characteristics of this material were deter-
mined experimentally. The honeycomb structure (Fig. 1, b) is
replaced by a homogenized orthotropic continuous medium.
The finite element method is used to calculate the mechanical
properties [11].

The geometric parameters of the honeycomb structure
cells are as:

[,=6.1054 mm; /,=3.0527 mm; 6=60°; /=10 mm; }Z,=0.4 mm,

where }7‘ is the cell wall thickness; /. is the height of the hon-

eycomb structure. The honeycomb structure satisfies Hooke's
law (1). Engineering steels of homogenized orthotropic con-
tinuous medium have the following numerical values:

E1=2.91 MPa; E,,=2.91 MPa; E;;=215.1 MPa;

v1,=0.972; v55=0.0051; v;3=0.0042; p,=253.189 kg/m’; (17)
G1=1.118 MPa; G,;=39.1 MPa; G5=39.1 MPa.

The upper and lower face layers are made of carbon fiber.
Their elastic properties satisfy Hooke's law. Engineering steels of
this material are as follows:

E~160x10 Pa; E,=6.8x10’ Pa; v,,=0,32; v,,=0.0136;
G,=800%10° Pa; G,.=G,.=4x10’ Pa; p~p,=1400 kg/m’.  (18)

The geometric parameters of the structures have the fol-
lowing  values: o=m/12; s V=2354m; 5P=2.33 m;
sp"=2.313 m; h=h;=10" m; =107 m.

The results of the calculations of the first ten natural fre-
quencies of structures vibrations are given in Table 1. The number
of circular waves 7 is given in the first column of the table, the size
of the eigenvalue problem is given in the second column of the
table. The natural frequencies obtained by the Rayleigh-Ritz
method are given in the third column. The natural frequencies cal-
culated by the finite element method in ANSYS are given in the
fourth column. The relative difference of the natural frequencies o
obtained by different methods is given in the fifth column. To ana-
lyze the convergence of the natural frequencies of vibrations of the
structure, the eigenvalue problem was calculated with different
dimensions. As follows from the calculations, the natural

n | N« | o,Hz | oppm, Hz 1)

180 | 412.84 - -

1 | 210 | 412.25 - -
270 | 411.83 | 421.98 | 0.0240

180 | 431.29 - -

2 | 210 | 430.61 - -
240 | 430.1 438.45 0.019

180 | 449.92 - -

3 | 210 | 449.14 - -
240 | 448.56 | 455.76 | 0.0150

210 | 451.6 - -

8 | 240 | 450.80 - -
270 | 450.22 | 460.61 | 0.0220

210 | 452.73 - -

77 | 240 | 451.96 - -
270 | 45141 | 462.27 | 0.0230

210 | 458.77 - -

6 | 240 | 458.06 - -
270 | 457.54 | 467.82 | 0.0220

210 | 459.88 - -

9 | 240 | 459.05 - -
270 | 45846 | 466.99 | 0.0180

180 | 461.70 - -

4 | 210 | 460.85 - -
240 | 460.24 | 467.50 | 0.0150

180 | 464.27 - -

5 | 210 | 463.35 - -
240 | 462.71 | 471.14 | 0.0180

10 210 | 479.25 - -
240 | 47842 | 482.81 | 0.0091
Clamped shell Finite element analysis

o, Hz

Cantilever shell

T
8

T
10 12

Fig. 2. Dependence of the first frequency o,
on the number of waves n
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frequencies obtained by different methods are close. The spectrum of the natural frequencies is very dense. The
first ten natural frequencies are observed in the range ® €[411.83; 478.42] Hz. The dependence of the first natu-

ral frequency on the number of circular waves is shown by the solid curve in Fig. 2. The results of the finite ele-
ment analysis are shown by the dashed line in Fig. 2. The minimum natural frequency of vibrations is observed at
n=1. The minimum natural frequency of isotropic conical shells is observed at much higher values of  [12].

Cantilever shell

The results of numerical simulation of a cantilever conical shell are given in this paragraph. The
shell edge with a larger radius is clamped, and the edge with a smaller radius is free. To satisfy the boundary
conditions, the basis functions of the expansions (12) have the following form:

PO @) =¥ (@) =B (@) = (@) =¥ () = sin[(z’" DLl a)}
m m m m m 2L *

The mechanical characteristics of the upper and lower layers have the values (18), and the mechani-
cal characteristics of the honeycomb structure have the form (17).

The natural frequencies of the cantilever shell are given in | 7upje 2. Natural frequencies of vibrations
Table 2, and its columns have the same physical meaning as in Ta- of the cantilever shell
ble 1. As follovys from Table 2, the najcural frequencies obtalr.led. by | = T m o. 1z | om0z 5
the Rayleigh-Ritz method and the finite element method coincide. 1 1210 1 40946 | 417.15 0018
The dependence of the first natural frequency on n is shown by a | 5 [ 210 [ 40958 | 40990 | 7.8x10~
solid line in Fig. 2. The results of finite element modeling are given | ~3 | 210 | 365.95 | 353.16 0.036
by a dashed line. The minimum vibration frequency is observed at | 4 [ 210 | 307.81 | 292.54 0.050
n=6. The minimum frequency of the conical shell clamped on both | 5 | 210 | 271.49 | 265.06 0.020
sides is observed at n=1. 6 | 210 ] 262.10 | 264.29 0.006

The linear vibrations of the cantilever sandwich shell are 7 1210 | 27441 | 280.20 0.020
qualitatively different from the conical sandwich shell clamped on | _8 | 210 | 302.77 | 307.97 0.016
both ends, which follows from the results of the calculations given | _9 | 210 | 342.96 | 345.00 0.006
in Fig. 2. 10 | 210 | 391.95 | 389.58 0.006
Conclusions

The natural vibrations of a sandwich conical shell with a honeycomb structure manufactured by ad-
ditive manufacturing technology FDM and various boundary conditions are considered. The stressed state of
each layer is described by three displacements of the median surface of this layer and two angles of rotation
of the normal to the median surface of the layer. The high-order shear theory is used to model the stressed
state, and the Rayleigh-Ritz method is used to obtain the eigenvalue problem describing the natural vibra-
tions of the structure. The vibrations of a three-layer sandwich shell are expanded into basis functions that
satisfy the kinematic boundary conditions.

The element part of the mass matrix is close to zero due to the small thickness of the face layers and
the small weight of the honeycomb structure, which allows reducing the dimensionality of the eigenvalue
problem from which the vibration frequencies are calculated.

Linear vibrations of a truncated sandwich conical shell clamped on both sides and a cantilever shell
are studied numerically. The minimum natural frequency of a sandwich conical shell clamped on both ends
is observed when the number of waves in the circular direction is equal to one. The minimum natural fre-
quency of a cantilever sandwich conical shell is observed when the number of waves in the circular direction
is equal to six.

The results of semi-analytical calculations coincide with the results of finite element modeling in the
ANSYS environment.
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AHaJti3 JiHiHHUX KOJIMBAaHbL KOMIIO3UTHOI CAHABIiY-KOHIYHOI 000JIOHKH,
BHI'OTOBJICEHOI aIUTHUBHUMH TEXHOJIOTisIMH

'K. B. ABpamoB, 'B.B. YcneHcbkuii, ’B.T. Jwobapcbkuid, 20. A. CmenpbKux
'THCTUTYT eHepreTHYHNX MamuH i cucteM iMm. A. M. ITingroproro HAH Vkpainn,
61046, Ykpaina, M. XapkiB, ByJ1. KomynaneHukis, 2/10

* HarioHa/bHuMi TeXHIUHMH YHIBEpCHTET «XapKiBCHKUI MO TEXHIYHHIT IHCTHTYTY,
61002, Ykpaina, M. XapkiB, Bys. Kupnnaona, 2

Canogiu-koHiuHa 000I0HKA 3 NPYAHCHUM CIITbHUKOBUM 3ANOBHIOBAYEM, U0 OOCTIONCYEMbCS 8 Yiti pobomi, 8uzo-

MOBIAEMbCA AOUTMUSHUMY MeXHoNo2IAMU ma mae mpu wapy. CmitbHUKO8UI 3aN08HI08aY 8UPODIAEMbCA i3 Mamepiany
ULTEM, a eopiwni 11 doniumi 1uyesi wapu KOHCmMpYyKyii — i3 gyenenaacmuky. Kooicen wap xoncmpyxyiti € opmomponuum
mamepianom i 3a0060abHA€E 3akony I yKa. 3a80aKu npoyedypi 2omozeHizayii, AKa UKOPUCHOBYE MeMOO CKIHYEHUX eNleMe-
HMiB, 3aMicmb CMITbHUKOB020 3AN0BHI08AYA OMPUMAEMO eK8isalenmue opmomponHe cepedosuuye. Ilpyocri eracmugoc-
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mi ybo2o cepedosuwya 3a0060abHAIOMY 3aKoHY I'yka. Moodugikosana meopis 3¢y8y 8UCOK020 NOPSOKY 3ACMOCO8YEMbCS
011 MOOEIOBAHHS OeopmysanHs KOHCMPYKYil. Jepopmysanns KOHCHO20 wapy KOHCMPYKYIU ORUCYIOMbCS N SAmbMa
SMIHHUMU, 00 SIKUX GIOHOCSAMb MPU NPOEKYIL nepemiujeHb cepeOuHHOL noeepxHi i 06a Kyma nOGOPOMY HOPMALL 00 cepe-
OunHOT noeepxni. /[nsi po3paxyHKy nepemiujeHv wapie UKOPUCOBYIOMbCA SPAHUYHI YMOBU 05l HANPYICEHb | DAHUYHI
YMOBU, SIKI ONUCYIONb HENEPEePEHICIb NepeMilyetb Ha Medcax wapie. Koausanns mpuwiapogoi canosiy-o6010HKY po3Kia-
0aiomvcsi No OA3UCHUX QYHKYISX, AKI 300080IbHAIOMb KIHEMAMUYHUM 2PAHUYHUM YMOBaAM. [List 00CTIONCEH S KOUBAHD
suxopucmogyemocs memoo Pencsa-Pimya. Tlapamempu xonueans KOHCMPYKYiti po3paxoeyomscs iz npoonemu 81acHux
3Hauenv. /s sepuikayiti ompumanux pe3yibmamis 61ACHI YaCMOmu NOPIGHIOIOMbCS 3 OAHUMU CKIHYEHO eeMeHMHO20
MoOenosants. Ak euniusac i3 po3paxyHKie, 61ACHI Yacmomu, OmpuUMani memooom Penes-Pimya 1t Memooom CKiHYeHHUX
enemenmis, 6nusvki. Cnekmp erachux yacmom oyoice winbHull. Minimanvna énacna vacmoma KOIUSAHb CHOCMEPI2AEMbCs
npU YUCTE X8UJIb ) KOTOBOMY HANPSAMKY DIBHIM 0OUHUYI.

Knrouogi cnosa: canosiu-koniuna 00010HKA, CMINbHUKOBULL 3AN06HI08AY, JIHITHI KOJIUBAHH.
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