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UDC 539.3 Structures that are fixed on cylindrical inclusions are among the most common ones

in machine and aircraft construction. Some of these inclusions can be modeled as
FIRST MAIN thick-walled pipes with specified stress values on the inner surface. However, the lit-
PROBLEM erature does not provide accurate methods for calculating these structures, which
OF THE THEORY indicqtes the relevqnce of posing and solving such problems. T'he }?resented paper

considers the solution method for the model of the structure, which is an elastic ho-
OF ELASTICITY mogeneous layer located on two pipes embedded into it and having a longitudinal
FOR A LAYER cylindrical cavity that is parallel to layer boundaries. On the flat surfaces of the cavity
WITH TWO THICK- surface layer, on the inner surfaces of the pipes, the stresses are considered known.

When solving the problem, two types of coordinate systems are used: Cartesian for

WALLED PIPES AND the layer and cylindrical for the pipes and cavity. The basic solutions in different co-

ONE CYLINDRICAL ordinate systems are given as Lamé equations and combined using transition func-
CAVITY tions and the generalized Fourier method. An infinite system of integro-alberic equa-
tions is formed based on the boundary conditions on the upper and lower surfaces of

the layer, the surface of the cavity, and the continuity conditions between the layer and
Oleksandr Yu. DenshchyKkov | e pipes. After that, the system of equations is reduced to linear algebraic equations
Alex_day@ukr.net of the second kind, to which the reduction method is applied. The problem is solved
ORCID: 0009-0008-2385-5841 numerically with a given accuracy, which allowed obtaining the stress-strain state at
any point of the elastic body. An analysis of the stress state is carried out with differ-
ent values of the distance between the thick-walled pipes. On the upper and lower
boundaries of the layer, and on the surface of the cylindrical surface, the stresses are
considered known. The obtained results do not show a significant effect on the stress
along the lower and upper surfaces of the layer. At the same time, the stresses in the
layer along the surface of the pipe and layer junction decrease as the distance be-
tween the pipes increases. The obtained numerical results can be used in the predic-
tion of geometric parameters during design.
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Introduction

At the stage of designing aircraft and machine-building structures, the problem of choosing a
calculation scheme is important to solve. In this case, the zones of body junctions, depending on the mutual
relations of sizes and mechanical characteristics, can be modeled in calculation models in the form of cavities
or various kinds of inclusions. One of the options for simplifying the calculation scheme is to model the smaller
of the bodies - a thick-walled pipe with mechanical properties different from those of the main body.

The choice of the calculation method by which the stress state in the body will be determined is no less
important due to the fact that the correctness of this choice directly affects the accuracy of the obtained
calculation results.

As of now, the most common practice is the use of structural mechanics methods or various kinds of
numerical methods to solve such problems [1, 2]. An example of this type of research is the paper [3], in
which the finite element method is used to analyze the stress state. A solution for a half-space reinforced by a
plate with a vertical cylindrical cavity strengthened with a shell is given in this paper. The disadvantage of
structural mechanics methods is the significant simplification of the model during the calculation, while
numerical methods are approximate and do not take into account the infinite boundaries of the body. The
abovementioned disadvantages lead to the fact that the use of structural mechanics methods or numerical
methods cannot guarantee high accuracy of the final result [4].

To obtain accurate results, analytical methods must be used [5, 6], but, unfortunately, they cannot
take into account more than three spatial boundary surfaces.
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In addition, there are a large number of papers in which the cylindrical cavity or inclusions are per-
pendicular to the surfaces of the layer [7-11]. The solution for the wave field of an infinite elastic layer,
which is weakened by a cylindrical cavity, was found in [7]. The conditions of fixation are given in the form
of ideal contact along the upper and lower surfaces of the layer. The loads applied to the layer are given in
the form of a tensile load acting along the cylindrical cavity. The problem statement in [8] is similar, taking
into account that the lower surface of the layer has a rigid fixation. To obtain the results in [7, 8], the Laplace
integral transforms and the integral Fourier method were useful. These methods were applied to the bound-
ary conditions and axisymmetric equations of motion, which create a one-dimensional vector inhomogene-
ous boundary value problem. The main drawback of the abovementioned approach is that it does not allow to
obtain a solution to the problem with several boundary surfaces.

In [9], an analytical solution was found for functionally graded (FG) composite laminated plates with
circular cutouts under different loading conditions, and the analytically obtained results and the results ob-
tained using the complex variable method and the finite element method were compared.

The problem of finding the distribution of thermal stresses in symmetric composite plates with non-
circular holes under the action of a uniform heat flux was solved in [10]. At the same time, the problem was
first solved for laminated composite plates with circular holes, and then, using the mapping function, the re-
sults for the plate with non-circular holes were obtained. This approach does not guarantee the accuracy of
the final results due to the fact that the used methods are approximate.

Paper [11] is devoted to obtaining the distribution of stresses in an elastic half-space with a vertical
cylindrical cavity when it is loaded using a coaxial stamp rotating under the action of a torque around its own
axis. The solution was obtained using Weber-Orr integral transforms.

Unfortunately, papers [7—11] are focused on solving problems with the location of a cavity or inclusion
perpendicular to the surfaces of the layer, so the results obtained in them cannot be used to find a solution to the
problem for a layer containing inclusions located parallel to its surfaces without significant refinement.

The heterogeneity of the layer model, with inclusions in the form of tubes and cavities, can be taken
into account with methods used for calculating composite materials [12—15].

Paper [12] is devoted to determining the dynamic stress state for two rods of different lengths, con-
nected in an overlap, under the action of a longitudinal force applied to one of the rods.

The behavior of multilayer structures under the action of a dynamic load arising from a transverse
impact was studied in paper [13]. The solution was obtained using the theory of a two-dimensional discrete
structure. In the process of solving, the displacement function for each of the layers was given in the form of
a power series. The theoretically obtained results were verified by experimental studies.

The study of the stress state in laminated aircraft glass units is devoted to papers [14] and [15]. Thus, in
paper [14] the thermal stress state in a laminated glass unit, which is considered as an open cylindrical multi-
layer shell of constant thickness, was studied. It is believed that thermal loads arose under the action of inter-
layer film heat sources. An analytical solution is provided in the paper. A method for assessing the strength of a
laminated glass unit in a collision with a bird was proposed in paper [15]. When solving the problem, the reduc-
tion in thickness and rotational inertia of the element of each layer was taken into account. The results of papers
[12—15] also cannot be used to solve the problem posed in this paper without very significant refinement.

Thus, to obtain a solution to the problem with a predetermined accuracy, the most promising is the
analytical-numerical generalized Fourier method [16]. It allows obtaining a solution for models consisting of
a group of bodies, each of which has its own coordinate system, and it is possible to use several types of co-
ordinate systems simultaneously.

Using the generalized Fourier method, solutions for an elastic cylinder with cylindrical cavities were ob-
tained in papers [17, 18], with cylindrical inclusions - in paper [19], and for a half-space with a spheroidal cavity —
in paper [20]. In this case, local cylindrical coordinate systems and formulas for the transition of basic solutions
between them were used, and for a layer with a spheroidal cavity - Cartesian and spherical coordinate systems.

In papers [21-23], formulas of various types are proposed for the transition of basic solutions between
cylindrical and Cartesian coordinate systems: in paper [21] — for a half-space with a cylindrical cavity; [22] —
for a layer with a cavity on the surface of which stresses are given; in [23], a solution for a layer with a cylin-
drical inclusion, for which the displacements are assumed to be known, is given. However, the formulas for the
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transition between local coordinate systems necessary to obtain results for a layer with several inhomogeneities
are not applied in these papers.

Papers [24-26] are devoted to increasing the number of bodies taken into account in the computa-
tional model. Thus, in paper [24], a situation is considered when Cartesian coordinate systems are used for
two of the bodies (layer and half-space), and the origin of the third one — cylindrical coordinate system — co-
incides with the origin of the half-space coordinates. In [25], a layer fixed on two cylindrical supports was
studied, and [26] was devoted to the study of the stress state in a layer with two continuous cylindrical inclu-
sions and mixed boundary conditions.

The papers [27, 28] are devoted to the determination of the stress state in models where the inho-
mogeneity is given in the form of pipes. However, they take into account only one inhomogeneity, and there
are no transition formulas between shifted cylindrical coordinate systems.

The abovementioned transition formulas are given in [29], which is devoted to the analysis of the
stress state of a layer with two swivel joints and a cylindrical cavity. The presented paper is a continuation of
the research, which begun in [29], while the swivel joints are replaced by thick-walled pipes, which requires
the introduction of additional continuity conditions.

Problem statement

The elastic homogeneous layer is located on two
pipes embedded into it and has a longitudinal cylindrical
cavity parallel to its boundaries (Fig. 1).

The pipes are considered in a cylindrical coordinate
system, and their geometric dimensions are given by the
outer radius R, and the inner radius r,, where p is the num-
ber of cylindrical inhomogeneity. The layer is given in the
Cartesian coordinate system (x, y, z), the cavities are given in
local cylindrical coordinate systems (p,, ¢,,z). The upper
boundary of the layer is a plane with a constant coordinate Fig. 1. Layer with two thick-walled pipes and
a cylindrical cavity embedded into it

y=h, the lower boundary is the same with y=— h.

It is necessary to find a solution to the Lamé equation Aii +(1—26) "' Vdivii =0 .
The stresses at the upper and lower boundaries of the layer and on the surface of the cylindrical cav-
ity (p=3) are given, respectively
FU(X’Z)\y:h = Fy(x,2); FU(x,z)‘y:_,; = £ (x,2); FU((P3aZ)\93=R3 =F;0((p3,z). @)

where U is the displacement in the layer; FU =2-G- L °

ii-divU +86nlj +;(ﬁ xrotf])} is the stress operator.
Stress distribution functions
Fho(x, z) = r(yhx)(x, z)-e + G(yh)(x, z)-e, + T(y];)(x, z)-e,,
a;(x,z) = r(y]i)(x,z) e, + G(yz)(x,z) e, + r(fz)(x,z) e,
}?((p3, z) = GS)(X, z)-e, + rgp)(x, z)-e,+ ’ESZ)(X, z)-e,
are considered known.
On the inner surfaces of the pipes p=1, p=2 the normal and tangential stresses are also given

FU(91.2), -, = F'(01,2), FU(9:.2),,,, = F(9.2). )

Continuity conditions — equality of displacements and stresses along the contacting surfaces of each
of the pipes and the layer

Uo((Paz)\p:Rl :Up((PaZ)\p:Rl ’ Uo((Paz)\p:R2 :Up((PaZ)\p:RZ 5 €)

FUO((P’Z}p:Rl :FUp((Paz)\p:Rl ’ FU()((PaZ)\p:R2 :FUp((P’Z}p:Rz : (4)
We will assume that as the distance from the origin increases along the z-axis and x-axis, all given
functions asymptotically approach zero.
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Problem solving
To solve the problem, the displacement in the layer is given in the form [17]

= 3 T T 7‘ M uk x y,Z;x,M)-l-]‘le(k,M)-ﬁ£7)(x’y,z;k’u))du-d}\’_|_
k=1 _o0 —0
3 3 ® _
+ZZJ. sz m Sk,m(ppﬂ(ppaz;)\fﬁlu (5)
p=1lk=1_m

Displacement in the pipes in the form of [20]

3 ® o

0= [ 2 40,0) R (0101 22)+ 40,00)- S, (01,01, 732 )R,

k=1 _oo m=—0

> AP R) Ry (0292 2:0)+ AN () 5, (P2 920z 0 )0,

m=—0

where H, (A,p), H, (A1), B,Ef’,z (), A,gl,)n (), Z,Sl,)n (), A,Ez,l (r), (,,)1( A) are unknown functions found from
boundary conditions (1), (2) and continuity conditions (3), (4).
Basic solutions of the Lamé equation §k,m (pp,(pp,z;k), Iék’m(pp,(pp,z;k), zZ,(f)(x,y,z;?», u),

ﬁ,g_)(x,y,z;k,u) are given in the form [27]

(d)ei(kzwx)iw.

b

ﬁki(x v,z A, ;,t)—
Rk m(paq)az 7\') n1(7\’p)e )LZer(p
Sk m(p 0, z; 7\4) ( )[(Slgn}, (I}\,|p) i(hz+mo ] k _1 2 3

Nf‘”:lv; Néd)=%(v—1)§2(1)+%V(y'); N3(d) 7Lrot(e3()),

v =Ly, ap-liy 2 +4(v—1)(V—§3(2)3J ;
A A op 0z
P T

N@z%rot(é}z); y=AA2+p?; —o<A,u<o,

where o is the Poisson's ratio; 7,,(x), K,.(x) are modified Bessel functions.

The infinite system of integro-algebraic equations has 9 unknowns and consists of five equations
satisfying the boundary conditions (1) and (2) and four continuity conditions (3) and (4). Due to the fact that
the components of equations (5) are written in a different coordinate system, the transition formulas between
the basic solutions were used [26]:

— to switch from basic solutions S, ,, of cylindrical coordinate system to the solutions of the layer

(at y>0) and u uk (at y<0)

Sk m(ppv(ppaz A= J-O);n 'e_iw?p-wyl’ .4(7) d“ kzl, 3’
R (6)

—Inx, £y, d

S2m(Pyr0,07: K)=( l) [or- [(’“m n-— fp}ﬁl(”Hzl??)i%(l—c)ﬁs(”)'—e —*,

§

2 Y

—00

where v =A% +p ; o, (A,n)= M;Y ; m=0,21,42,..

ISSN 2709-2984. Ipobnemu mawunobyoyeanns. 2025. T. 28. Ne 2 47



DYNAMICS AND STRENGTH OF MACHINES

— to switch from basic solutions ﬁ,g” and ﬁ,g’) of the layer to solutions Rk,m of the cylindrical coor-
dinate system

7(x,y,2)= " Yy”-i(i-m_) o (k=1 3)
"~ (7)
()(x v,z i Z[z ‘05 ) A m H+y,- kz) iy +4u(l G) )]

where R, ,, =b;, (pp’k).ei(m(p,ﬁ)»z);

zi,,,<p,x>=ap-u(w)n-u(m)-[a(p%p+az];

b, ,(p.A)=¢,-[(45-3)- 1, (xp)+rpL,(rp) +é¢i‘m[1;(7»p)+

a,n(p,x){ap-a(w)xipw(p-i-z;(xm}

e, E(p , €, are unit vectors in a cylindrical coordinate system;

4(6 - 1)
Ap

z,,ap)}azixpz;(xp);

—to switch from the basic solutions of the cylinder with number p to the solutions of the cylinder
with number g

Sim(Py0,02:0)= Zbk’”;q( et k=12, 3

pq): (_1) m— n(kf ) ’(m’”)o‘pq 'a,n(pq’k);

520 )= R, ) oo, ) R0, R0, ),

2Pq

7 mn
bl,pq

—

B (o, )= (1K, e, )¢ B, (1), (3)
where a,, is the angle between the x, axis and the segment {,,, K Nm (x)=(sign(x))" - K,, (]x|)

After using the formulas for the transition of basic solutions between coordinate systems (6)—(8), the
system of equations was given in one coordinate system. Thus, the infinite integro-algebraic system of equa-
tions was reduced to an infinite linear system of equations, to which the reduction method was applied [22].
The order of the system of equations m is a parameter of the accuracy of the calculation results.

Numerical studies of the stressed state

Two homogeneous thick-walled pipes pass through an elastic isotropic layer (Fig. 1). In addition, the
layer has one cylindrical cavity. Poisson's ratio of the layer (D16T alloy) 0=0.3; modulus of elasticity
E=71000 N/mm’. Poisson's ratio of pipes (ShKh15 steel) 6=0.28, modulus of elasticity £=216000 N/mm®.

Geometric parameters of the model: outer radius of pipes R;=R,=16 mm, inner one r;=r,=11 mm,
cavity radius R,=16 mm, distance to the upper and lower boundaries of the layer #/=32 mm, h =22 mm. The
pipes and the cavity are arranged parallel to each other, with their central axes lying on a horizontal plane
parallel to the upper and lower boundaries of the layer, thus, a;,=0, a;;=n. The calculation was performed
with different distances between the pipes L1,=80 mm and £;,=100 mm.

Normal stresses are given at the upper boundary of the layer in the form of a unit wave

o"(x,z)=-10° -(22 + 102)72 ~<x2 +10° )72 and zero tangential stresses t'") = <") = 0; at the lower boundary —

normal stresses in the form of a unit wave and zero tangential stresses so that the layer is in equilibrium.
Tangential stresses at the lower boundary of the layer are zero. Normal stresses on the inner surfaces of the
pipes and the cavity are also zero.
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The infinite system was truncated by the parameter m=4 (the number of terms of the Fourier series
and the order of the system of equations).

The integrals were calculated using Filon quadrature formulas. The accuracy of meeting the boundary
conditions at the specified m and the specified geometric parameters is not less than 10 at values from 0 to 1.
The obtained results are shown in Figs. 2-5.

Fig. 2 shows graphs of the specified stresses o, and the corresponding stresses o, on the upper sur-
face of the layer at z=0. The results of calculations with different distances between the pipes are shown:
L,=80 mm and L,,=100 mm. On the lower surface of the layer, the stress distribution diagram and values
remain the same.

As the graphs in Fig. 2 show, changing the distance between the pipes does not significantly affect
the stress distribution on the surface of the layer. Moreover, the stress distribution o, is very similar to the
distribution of the given stresses c,, except that the stress graph o, demonstrates the presence of both com-
pressed and stretched zones in the layer. With increasing distance from the location of the extremum on the
diagram of the given stresses o,, the stress values decrease, and their graph asymptotically approaches zero.

Fig. 3 shows the stress o, in the layer along the continuity surface of the right pipe and the layer
(p=1) at z=0.

The maximum stresses G, occur along the outer lateral side of the pipe and have a negative sign
(Fig. 3). Along the inner lateral surface of the pipe, the stresses are positive and much smaller in magnitude.
In addition, it should be noted that the maximum values of the stresses , are inversely proportional to the
distance between the pipes.

Fig. 4. shows a graph of the stresses o, along the continuity surface of the right pipe and the layer
(p=1) at z=0.

These graphs also show an inverse proportionality for the stress value and the distance between the pipes.

The most interesting results are given in Fig. 5, which shows the stress graph o, in the layer along
the continuity surface at z=0.

As shown in this graph (Fig. 5), as the distance between the pipes increases, the values on the G, dia-
gram become more uniform and closer to the average value.
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Conclusions

A new problem is solved for a layer with a longitudinal cylindrical cavity (parallel to its boundaries)
and located on two thick-walled pipes embedded into it.

The pipes are given in the form of bodies for which the continuity conditions along the surface
where they contact the layer are given. This allowed reducing the problem to the classical model of the spa-
tial theory of elasticity. Its solution was performed using the analytical-numerical generalized Fourier
method, which made it possible to obtain a solution with a given accuracy. The stress state analysis showed
the distribution of internal stresses in the layer and pipes.

The obtained results indicate that with an increase in the distance between the pipes, the values of in-
ternal stresses in the layer along the continuity surface of the layer and pipes decrease.

The solution method proposed in the paper can be applied to a larger number of pipes and cavities.

Further development of this paper is possible in the direction of complicating the mathematical
model by increasing the number of bodies made of different materials and constructing models from several
pipes nested one inside the other.
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DYNAMICS AND STRENGTH OF MACHINES

Iepuia ocHOBHA 3a1a4a Teopii MPYKHOCTI AJ15 MIapy 3 IBOMA TOBCTOCTIHHMMH Tpy6amu i
O/THI€I0 UJIIHAPUYHOIO MOPOKHIUHOIO

0. 10. /lenbmuxoB

HamionansHuii aepoKOCMiuYHHN YHIBEpCUTET «XapKiBChKUH aBiallitHUN iHCTUTYTY,
61070, Ykpaiuna, M. XapkiB, Bys. Banuma Manbka, 17

Koncmpyxyii, 3axkpinneni na yuniHOpuyHUX 6KIIOYEHHSX, € ceped HAUNOWUPEHIWUX Y Mauno- U agiabyoysan-
Hi. Tle6Ha KinbKicmb maKux 6KIOYEeHb Modce OYymu NPOMOOeNbOBAHA 8 PO3PAXYHKOBUX MOOESX SIK MOBCMOCMIHHI Mp)Y-
OU 0151 AKUX 3A0AHO 3HAYUEHHS HANPYIHCEHb HA 6HYMPIwHIU nogepxHi. OOHaK y nimepamypi He HAB8eOeHO MOUYHUX MEmOo-
016 PO3PAXYHKY UWe32a0aHUX KOHCMPYKYIL, Wo C8I0UUMb Npo aKmydlbHiCmMb NOCMAHOGKU | GUDIUEHHST MAKUX 3a-
60aHb. YV nooaniu pobomi po3enanymo memoo po38 sa3aHHs Olsi MOOell KOHCMPYKYIl, KA npeocmasiena y ueisoi
NPYIACHO20 OOHOPIOHO20 Wapy, PO3MAUOB8AHO20 HA 080X 6PI3AHUX Y Hb020 MpyOax, i MA€ NO3008IHCHIO YUNIHOPUUHY
HOPOJACHUHY, NApaneabry 1o2o mexcam. Ha niockux nosepxusx wiapy noeepxmi NOpOJICHUHU, HA 6HYMPIUHIX NOBEPXHSAX
mpyb HanpyscenHst 8eaxcaiomvcs gioomumu. Ipu poss’azanni 3a0aui 3acmoco8ano cucmemu KOOPOUHAmM 080X MUNig:
dexapmosa 051 wiapy U YuriHOpuyHi — 0 mpyo6 [ nopoichunu. bazosi po3s’asku 6 pizHux cucmemax KoopouHam npeo-
cmaseneri y euensoi pieHsans Jlame i nOEOHAHT 3a 00NOMO2010 (PyHKYIU nepexody y3azanibHeHo20 memoody Dyp’e. Heckin-
yeHa cucmema iHmezpo-anedpaiuHux pieHsHb CHOPMOBAHA, CRUPAIOYUCH HA 2PAHUYHI YMOBU HA GEPXHILl MA HUJICHIL
NOBEPXHSX WApPY, NOBEPXHI NOPONICHUHU Ul YMOBU CApsdicents Midic wapom i mpybamu. ITicas yboeo cucmema pisHsiHb
oyna 36edena 00 NIHIUHUX AneeOPAIYHUX DIBHAHL OpPY2020 POOY, 00 SKUX 3ACMOCOBAHO MemoO pedykyii. 3adaua
PO36’513aHA YUCENbHO 13 Haneped 3a0aHOI0 MOYHICMIO, WO 00360MUL0 OMPUMAMU XAPAKMEPUCTIUKU HANPYIHCEHO20
cmany y 0y0b-akiti mouyi npysicnozo mia. Ilpogedeno ananiz HanpylceHo2o cCmauy 3 pisHUMU 3HAYEHHAMU 8I0CAHI
Midie moscmocminHumu mpyoamu. Ha 8epxHitl ma HUMCHIU Medcax wapy, Ha no8epxHi YUriHOPUYHOL NOPONCHUHU HA-
npyosicenst 6axncaiomucs gidomumu. Ompumano pezyabmamu, sSKi He NOKA3AU CYMMEBO20 BNAUBY BIOCHAHI MIJIC MOG-
CMOCMIHHUMU MPYOAMU HA HANPYIHCEHHSL Y3008HC HUICHLOI Ma 8epXHbOI nogepxonb wapy. Ilpu yvomy nanpyicenns 6
wapi 6300824C NOBEPXHI CPSICEHHS. mMpyou Ul wapy npu 30inbuenHi giocmani misic mpyoamu smenuiyromocs. Ompuma-
HO YUCTO08T Pe3VIbIMAmu, Wo MOICYymb OYMu 3aCMOCO8AHT Npu NPOSHO3Y8AHHI 2COMEMPUYHUX NAPAMEmPIE niod Yac npo-
EKMYBAHHsL KOHCMPYKYIL, AKI 3aKPINIeHi 3a O0NOMO20H0 YUTTHOPUHUHUX BKIIIOYEHD.

Knrouoei cnosa: wap 3 yuniHOpuuHUMU GKIIIOUEHHIMU, MOBCMOCMIHHI mpyou, y3aeanibHeHul memoo @yp’e.
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