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Introduction

Solving problems of the theory of elasticity about the stress state of continuously inhomogeneous
bodies requires the improvement of existing ones and the development of new effective methods that allow
to fully take into account arbitrary dependences of material properties on coordinates and the nature of the
applied load [1-5]. In papers [6—8], an approach to solving problems about the stress state of continuous ra-
dially inhomogeneous cylinders, which is based on the method of reduction to the integral Volterra equation,
is proposed. To determine the stress-strain state of a finite cylinder under the action of compressive forces,
the numerical-analytical method of finite squares is applied in paper [9]. Based on variational principles [10],
problems about the stress state of an axisymmetric cylinder under the action of surface load [11] and an ani-
sotropic thick-walled composite layered shell under the action of lateral pressure [12] were solved.

The need to assess the strength, durability and reliability of existing and newly created engineering
systems becomes the reason for the emergence of complex problems of the mechanics of deformable solids.
Their solution became possible due to the development of numerical methods in combination with the use of
computer modeling of the posed problems [13—15]. One of the most frequently used numerical methods is
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the finite element method [16], for which the corresponding application software packages, focused on solv-
ing specific classes of problems of the theory of elasticity, have been developed and improved [17].

In the study of the stress state and vibrations of shells of various geometries and structures, the spline
collocation method [18, 19], which allows obtaining solutions to the aforementioned classes of problems with a
sufficient degree of accuracy, has come in handy. Thus, in [20], within the framework of the spatial theory of
clasticity, the problem of the stress state of an inhomogeneous hollow cylinder with rigidly fixed ends was
solved on the basis of spline approximation, while the reliability of the obtained results was checked using the
finite element method. Based on the spline approximation method, in [21], the stress state of isotropic solid cyl-
inders with different methods of ends fixing under the action of an external uniform normal load is studied.

This paper is a continuation of the papers devoted to the application of the spline approximation
method to the solution of axisymmetric problems of the stress state of solid cylinders with different methods
of the ends fixing. In this case, cylinders made of continuously inhomogeneous material are considered.

The aim of this paper is to study the effect of changes in the law of elastic properties of the material,
the length of the cylinders, and the method of the ends fixing on the stress state of solid cylinders subjected
to surface normal loading. The study is based on a methodology that utilizes analytical methods of variable
separation with spline approximation of functions along the longitudinal coordinate and the numerical
method of discrete orthogonalization along the radial coordinate [21].

Problem statement and solution methodology
An axisymmetric problem of linear elasticity theory is solved. Solid cylinders are referred to an or-
thogonal cylindrical coordinate system 7, 6, z, where r is the polar radius, 0 is the central angle in the cross
section, and z is the longitudinal coordinate. The Lamé coefficients in this coordinate system take the form
lel; szl"; H3:l.
In this case, the following relations occur
x=r-cos9; y=r-sinb; z=z.

The equations of linear elasticity theory for an isotropic axisymmetric body in a cylindrical coordi-
nate system [21] are taken as the starting points. Adding the load on the lateral surface »=R and the boundary
conditions at the ends z=0; / to them, we come at a two-dimensional boundary value problem.

For the cylinders under consideration, we choose a material that is continuously inhomogeneous in the
radial direction. Let’s assume the cylinders to be under the action of an external normal load g=¢,-sin(ms/[)
(go=const). The boundary conditions on the lateral surface »=R due to the applied load have the form

c,=q,; 1, =0 atr=R. (1)

We will consider two types of boundary conditions at the ends, namely: hinged support and rigid
fixation. In the case of hinged support of the ends, the boundary conditions have the form

c,=0; u,=0 atz=0;/, 2)
and in the case of the rigidly fixed ends
u,=0; u, =0 atz=0; /. (3)

The problem is solved in the interval 0<r<R, therefore it is also necessary to formulate boundary
conditions for 7=0. Based on physical considerations, these can be taken as

t,=0; u, =0 atr=0. 4)
We choose the radial u, and longitudinal u, displacements as the solution functions. After some

transformations from the original equations, we obtain a solution system of partial differential equations with
variable coefficients along the radial coordinate »

Ou, __ay 0, ay+ay 0w, 10w, u_10a0u, 10a,u, 1 0aou,.

or’ a, oz’ a o0z ror r* a or or a Or r a Or 0z
Ou, __ay+a; O'u, ayta, 10w, @ Ow, 10w, 1 0ay0u, 1 da;ou, )
or’ a, Oroz a, r oz ay &2 ror a, or 0z ay or or’
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' ZLV)z; a, :Lz; a; = £ ; (0<r<R; 0<z<L),
I-v-2v I-v-2v 2(1+v)
where, in the general case, E=E(r) is the Young's modulus; v=v(r) is the Poisson’s ratio.
Considering that
Ou, u, Ou, ou, u, Ou, Ou, Ou,
c,=a +a,—~+a,—=; cy=a,—+a—L+a,—=; 1, =a;] —+—=|,

or r oz or r oz 0z Or

boundary conditions (1), (4) in the displacements will have the form
w =03 M0 atr=0 (6)
A
ou, u, Ou, Ou, Ou,
a, +a,—*+a, q,; +—==0 atr=R.

1074 or

To reduce the dimensionality of the boundary value problem for the system of partial differential equa-
tions (5) with boundary conditions (6), we give the solution of this system in the form of spline functions [21]

U, =3 (1) 0u(2)s =D (1) @y(2). @)

where u,(r), u,(r) are sought functions; @;,(z), @z) are functions constructed using linear combinations of
third-degree B-splines [22], which allow for an accurate satisfaction of the boundary conditions at the ends
of the cylinder (2), or (3).

In the case of hinged fixing of the ends (2), the functions ¢;(z) (=1,2; /=0, N ) are defined by expressions
01p(2) = 4By (2)+ By (2); ¢,,(2)=B;'(2) = 0.5B5(2) + Bs(2) 5 @,(2)=B{(2); (2,3, ..., N-2);

or r Gz: "

Piy-1(2) =By ' (2)=0.5B (2)+ By 7 (2) 5 ¢y (2)=—4B5 (2)+ By " (2)
0y0(2)=B;(2)5 05,(2) = By (2) = 0.5By(2) + B3(2) 5 9,,(2) =B{(2); (/=2,3, ..., N-2); ®)
Poy-1(2)=B5 ' (2) = 0.5B5 (2)+B; (2); 9y (2) =485 (2) + By (2).
For the rigidly fixed ends (3), respectively,
9,0(2)=B)(2); ¢,(2)=B;"(z)-0.5B)(z) + B;(2); 9;(2)= B{(2); (=2,3,...,N-2); (i=1,2) 9)
Qiv1(2) =By (2)=0.5B () + B (2): @y(2) =—4B5 (2)+ By (2).
After substituting expressions (7) taking into account (8), (9) into the system of differential equations (5),

it is necessary to satisfy them at the collocation points z=z; (k= 0, N ). In this case, we obtain the system 2(N+1) of
ordinary differential equations. The same is done with the boundary conditions (7) on the surfaces 7=0; R.

Let’s assume that the collocation nodes &(k=0, 1, ..., N) satisfy the conditions

& €[22 2215 &oin El221:22q] (=0, 1,2,..., n).

Then on each segment [zy;, z;:+1] there will be two collocation nodes, and on adjacent segments [zp;+1, Zi+2]

there will be none at all. On each of the segments [z; z»:+1] we will choose the collocation points as follows
&y =2zy+th; &=z, +t,h (=0, 1,2,...,n),
where £ is the uniform grid step on a segment [0, []; #; and ¢, are roots of a second-order Legendre polyno-
mial on a segment [0, 1]
1 3 1 3

l’lz——— -4

2 67 2 6
Such collocation nodes are called optimal and allow obtaining an approximate solution to problem
(6), (7) with an accuracy of O (/°).
Thus, the solution system of ordinary differential equations with coefficients varying along the coor-
dinate 7 takes the form
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v d*uy, a N a,+a N du,, 1~ duy
Z. —1‘(P1i(zk):__32.,0”11 o (z) - 32., 2 ‘(Pzi(zk)_;z., Co0(z) +

=0 gy? a, == a, =0 dy =0 dr

1 «n 1 da, ~o~ duy; 1 da Ny, 1 da
3 Dyt OulE) - ldl o g Ou(E) - d2 A d2 ol 025 (10)

v d’u a +a N duy a, +a; 1 N a; NN
z — (7)== 32., Ly (z) — =2 3_zizouli‘(P;i(zk)__lzizouzi'(Plzli(zk)_
a, a, r a,

i=0 dr S i=0 Jp
N du,, 1 da 1 da N du,,
Dy g O T G e 0 a0~ G S T (5 (22N

with boundary conditions

N N du
Zizouli‘(Pli(Zk)ZOQ zl 0 d21 0,,(z,)=0 atr=0;

N duy; N
“z,o ar Sz ) tay )y (Pll(Zk)Jfazz Uy - 93:(2,) =4,

N du
Z- U (Plz(Zk)+Z 2 9,(2)=0 atr=R. (11)

The resulting system of ordinary dlfferentlal equations (10) with boundary conditions (11) forms a
two-point boundary value problem in the interval 0<r<R. In this case, the system of equations (10) contains
some terms that, when =0, are transformed into uncertainty 0/0, to reveal which we will use the correspond-
ing limit transitions at »—0, namely

Uy;

Dy G0N, (12)
r dr

Taking into account (12), equations (10) at the point =0 takes the form

v d’u, 2 da, N duy; 1 da
Zzo dzl 0y (z) = __d_l i=0 d; @y (zp) - ZZ Uy P (2;) 5

N d? Uy, a, +a
Dy i 9z = ——Z, S 05 () = 2a3 . (13)
By adding boundary conditions (11) to the systems of equations (10), (13), we arrive at a boundary
value problem that can be solved numerically. At the same time, when =0, the system of equations (13) is
used, and for all other values of 7 — the system of equations (10) is used.
Let’s introduce the notation

duy, F—
FTUG S Yy Ty Yy T Uy ,=—— ([@=0,N).
Vi =Us W dr Y3 20 Ya dr ( )
Then the system of differential equations (10) to be solved can be given in vector form
—‘;Y =A(r)Y + f; (0<I<R), (14)
»

Where ¥ = {1sees Vin> Vaosees Van s Vioeeos Van s Vagoees Van b3 A(¥) is the square matrix of order 4(N+1)x4(N+1);
£ is the vector of the right-hand side. The boundary conditions can be written similarly

BY(0)=b; B,Y(0)=b,, (15)
where B, B, are rectangular matrices of order 2(N+1)x4(N+1).

To find the solution to the boundary value problem (14), (15), a stable numerical method of discrete
orthogonalization is used.
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Some estimates of the accuracy of the obtained results

Under the conditions of hinged fixing of the ends, this problem can be solved in another way. We
choose two components of stresses and displacements as the functions to be solved [21]. Having separated
the variables in the direction of the coordinate z, based on the representation of these functions in the form of
expansions in Fourier series and, having solved the one-dimensional boundary value problem for the system
of ordinary differential equations by the stable numerical method of discrete orthogonalization, we obtain a
solution that we can accept as exact with a sufficient degree of accuracy.

For the cylinders under consideration, a polymeric continuous-inhomogeneous material with a gradient
profile corresponding to the quadratic law of change of Young's modulus along the coordinate 7: E(ry=a-1"+b-r+c
(0<r<R) [23]. Due to the insignificant differences in Poisson's ratio for polymeric continuous-inhomogeneous ma-
terials, v=0.4 was chosen for its value. Let us have an increasing law of change of the elastic modulus, i.e.
E(0)=110 MPa; E(R/2)=150 MPa; E(R)=243 MPa, then the coefficients a=4.42; b=5.4; c=110. The problem is
solved for the following geometric parameters of the cylinders: radius R=5-1,, length I=6-ly; 10-y; 14-1,.

In the following, all linear dimensions are referred to a unit of length, stresses — to a unit load.

The results of solving the problem for the maximum values of stresses o,, Gy are given in Table 1 in
the average cross section of the cylinder length for three values of the coordinate »=0.5-R; 0.75'R; R. The
number [ indicates the solutions obtained on the basis of the method of variables separation using Fourier
series, the number II — on the basis of spline approximation for different numbers N, of approximating spline
functions. As can be seen from the given results, for N>4 the error does not exceed 1% for all values of the
parameter ;. Similar results are obtained for the other two laws of change of Young's modulus. In further
calculations, N=12 is selected.

Table 1. Convergence of the solution depending on the number of spline functions

G, Gp 0
I i Error, %

I N, I N, N,

4 6 8 12 4 6 8 12 4 6—12

0.5-R 6.61 322 | 6.60 | 6.59 6.61 692 | 336 | 691 6.90 6.92
6 | 0.75-R | 829 | 4.09 | 828 | 8.28 8.29 948 | 4.64 | 9.46 9.46 9.48
R 10.00 | 5.01 | 9.99 | 10.00 | 10.00 | 14.39 | 7.12 | 14.33 | 14.38 | 14.39

0.5-R 849 | 4.19 | 849 | 848 8.49 921 | 453 | 9.19 9.19 9.20
10 | 0.75-R | 9.16 | 455 | 9.15 | 9.14 9.16 10.82 | 535 | 10.80 | 10.81 | 10.82 | >50 <1
R 10.00 | 5.03 | 999 | 9.99 10.00 | 1342 | 6.70 | 13.38 | 13.40 | 13.42

0.5-R 9.01 | 447 | 9.00 | 8.99 9.01 9.68 | 479 | 9.67 9.66 9.68
14 | 0.75-R | 943 | 471 | 941 9.41 9.43 10.86 | 5.40 | 10.85 | 10.84 | 10.86
R 10.00 | 5.04 | 999 | 9.98 10.00 | 12.59 | 6.32 | 12.57 | 12.57 | 12.59

Numerical results and their analysis

Based on the given methodology, a study of the stress state of continuous inhomogeneous cylinders
of different lengths along the thickness, which are under the action of an external load g=¢,sin(zns//) (qo=10)
under the conditions of hinged and rigid fixing of the ends, was carried out. Three variants of the law of
change of the elastic modulus are considered:

1) E(0)=110 MPa; E(R/2)=150 MPa; E(R)=243 MPa;

2) decreasing Young's modulus £(0)=243 MPa; E(R/2)=150 MPa; E(R)=110 MPa;

3) averaged over the thickness Young's modulus £(0)=158.33 MPa; Poisson's ratio v=0.4.

The problem was solved with the following initial data: the radius of the cylinder R=5-/,, its length
1=6-1y; 10-1y; 14-1y, coefficients 1) a=4.42; b=5.4; c=110 — for the increasing; 2) a=4.42; b=-47.8; c=110 —
for the decreasing; 3) a=0; 5=0; c=158.33 — for the averaged laws of change of Young’s modulus.

The results of solving the problem are given in Figs. 1-5 in the form of graphs of the distribution of
the fields of circular oy and radial o, stresses along the length of the cylinder for three sections along the ra-
dius: on the outer surface (¥=R) — in Figs. 1-2; in the section »=R/2 — in Figs. 3—4 and in the section =0 — in
Fig. 5, which show the stress fields o and 6,, where they have the same values.

The curves marked on the graphs with a solid line correspond to the Young's modulus averaged over the
thickness, ones marked with the dashed line — to the increasing law of change of the elastic modulus, and ones

ISSN 2709-2984. Ipobnemu mawunobyoyeanns. 2025. T. 28. Ne 2 65



DYNAMICS AND STRENGTH OF MACHINES

marked with the dash-dotted line — to the decreasing one. Fig. 1, Fig. 3 show the distribution graphs of the circu-
lar stress fields, Fig. 2, Fig. 4 — for radial ones. In all figures, graphs a, ¢, d correspond to the case of rigid fixing
of the ends, graphs b, d, e — for hinged support. In this case, options a, b correspond to the distribution of stresses
for cylinders with a length of /=6, options ¢, d — for cylinder with the lengths of /=10, options d, e — for /=14.

The graphs shown in Figs. 1-5 illustrate the influence of the length of the cylinders, the method of
the ends fixing and the characteristics of the material on the stress state of solid cylinders in different sec-
tions along the radius.

From Figs. 1-2 it is seen that the circular stresses are predominant in this section.

Their maximum amplitude values of the stresses oy and 6, acquire in the average section of length z=//2
for both methods of the ends fixing, for all laws of change of the modulus of elasticity and all values of the cyl-
inder length. As can be seen from the graphs (Figs. 1-2), the influence of the material on the stressed state of the
cylinders under consideration takes place for circular stresses (Fig. 1) in the average length interval //6<z<5-//6
for all values of / for the two methods of the ends fixing and for the length /=6 at the ends of the cylinder.
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Fig. 1. Distribution of circumferential stresses along Figure 2. Distribution of radial stresses along the length
the length of the cylinders on the outer surface of the of the cylinders on the outer surface of the cylinder =R

cylinder r=R
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Fig. 3. Distribution of circular stresses along the length Fig. 4. Distribution of radial stresses along the length
of the cylinders in cross section r=R/2 of the cylinders in cross section r=R/2

In the average length section, the maximum values of the circular stresses at the hinged fixing of the
ends increase for the increasing law of change of the modulus of elasticity by 1.2 times compared to the
Young's modulus averaged over the thickness and decreases by approximately 10% for the decreasing one.

In all variants of the law of change of the elastic modulus, the maximum value of the stresses is sig-
nificantly affected by the increase in length, it decreases within 7-8%.

With the rigidly fixed ends, the value of the circumferential stresses does not depend on the length of the
cylinders. In this case, the maximum value of the stresses compared to the average law of change of Young's
modulus increases by 14% for the increasing law and decreases by approximately 8% for the decreasing one.

Under the conditions of hinged fixation in the average cross-section, the value of 6, increases by ap-
proximately 20% compared to rigid fixation.

The value of the circumferential stresses is significantly affected by the change in length in the case
of rigid fixation near the ends of the cylinder. Thus, if for short cylinders /=6 the value of the stresses de-
creases rapidly monotonically, then for cylinders which length is /=10; 14 their value, approaching the ends,
decreases almost to zero, and then increases rapidly at the ends.

For radial stresses (Fig. 2), the influence of the material takes place at the ends in the case of their
rigid fixation for a short cylinder. Compared with the averaged law of change of Young's modulus, their am-
plitude value decreases by almost 5 times for the decreasing one and increases by approximately 3 times for
the increasing law of change of the modulus of elasticity.

With the hinged method of the ends fixing, changes in length and the law of Young's modulus do not
affect the distribution of radial stresses. Near the ends, when they are rigidly fixed, the length similarly af-
fects the distribution of the fields of circular stresses.
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When distributing the fields of circular g qi
stresses in the cross section »=R/2 (Fig. 3), the 2 ! /%k\
following features occur: for the hinged and rigid Ay 2= TN z i TN
methods of the ends fixing, a change in the law A N . /. A
of the modulus of elasticity does not affect their v R /’/ \-,\
distribution. Increasing the length of the cylin- 2 : L f A
ders leads to an increase in the maximum
stresses by 1.3 times for /=10 compared to the S T 2 5 4 so " b B 7 2t
length /=6. For cylinders with a length of /=14, a b
the magnitude of the stresses does not change o o
significantly with hinged ends fixing, and in the o %
case of rigid fixing - by approximately 8%. ’ /// - 3\ : / /,'-\\\

The parabolic shape of the distribution 5 127 N ¢ /7 NN
curves of both circular and radial stresses, which i >4 \ i 4 \)
occurs in the case of hinged ends fixing in all sec- d
tions of the radial coordinate, is violated for rig- : ‘
idly fixed ends, and the monotonicity of the de- “TH 3 b 4 150 Y w5 & A P
cline near the ends — with an increase in length. c d

In the average cross section of the radial

. . : : el o
coordinate, with an increase in the length of the [ q
cylinders, the influence of the material on the 8 // =3 8 f'_x
distribution of radial stresses is observed (Fig. 4). ] / \ y 4 7 \,\\

In this case, the zone of influence de- _,/7 i fy \
creases towards the middle of the length interval ‘ ¢
for both options for the ends fixing. In addition, in 2 2
the case of the rigidly fixed ends, the difference in . 4
the values of the stresses along the length of the 0 L2 3 4 sec 012034562
cylinder in the zone of the ends and the middle © f
section becomes larger with increasing length for Fig. 5. Distribution of circumferential and radial stresses
1_26 by prl‘)ro;(ifllla{)dy 2 times, f?r 21210 by 2.2 along the length of cylinders in cross section r=0
times and for /= y approximately 2.4 times.

In the section »=0 (Fig. 5), where the circular and radial stresses have the same values, their magni-
tude is quantitatively and qualitatively affected by both the material, the length of the cylinder, and the
method of the ends fixing.

If on the outer surface the stresses have maximum values for the increasing law of change of the
elasticity modulus, then in the section =0 — for the averaged one. Moreover, when the ends are hinged for
short cylinders /=6, the maximum value of the stresses decreases by approximately 18% for the increasing
one and by 1.2 times for the decreasing law of change of Young's modulus compared to the average.

In the case of the ends rigidly fixed on the ends of the cylinder, the maximum values of the stresses
occur for the decreasing law of change of Young's modulus, and their value decreases by approximately 1.2
times compared to the average law of change of the modulus of elasticity and by 1.4 times compared to the
increasing law of change of Young's modulus.

Within one law of change of the elasticity modulus, an increase in the length of the cylinder leads to
an increase in the maximum value of the stresses by 1.3 times for the rigid one and by 1.5 times for the
hinged one for /=10, by 1.4 times for the rigid one and by 1.6 times for the hinged one for /=14 compared to
the corresponding values for /=6.

Conclusions

1. Within the framework of the linear theory of elasticity for an axisymmetric body, the problem of
the stress state of solid cylinders made of continuously inhomogeneous material, which are under the action
of a uniform normal load with different methods of the ends fixing, is solved. In this case, an approach that is
based on the use of the method of separation of variables using spline approximation of functions in the di-
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rection of the longitudinal coordinate and numerical solution of the obtained one-dimensional boundary
value problem by a stable numerical method of discrete orthogonalization is used.

2. Thanks to the use of appropriate limit transitions, the uncertainty (0/0) of some components of the
system of ordinary differential equations being solved at a geometrically singular point of the cylinder (7=0)
is revealed.

3. An analysis of the characteristics of the stress state of the cylinders under consideration for the
distribution fields of circular and radial stresses depending on the law of change of the elasticity modulus,
the length of the cylinders and the method of the ends fixing was carried out.

4. It was found that the greatest influence of the law of change of Young's modulus on the stressed
state of cylinders occurs for circumferential stresses on the outer surface in the average length section for
both methods of the ends fixing. In addition, the influence of the material is observed for circumferential and
radial stresses on the ends for short cylinders (/=6-/;) with a rigid method of the ends fixing. Compared with
the average law, their value decreases by about 5 times for a decreasing one and increases by about 3 times
for an increasing law of change of the elasticity modulus.

5. Under conditions of the rigidly fixed ends, edge effects, which depend on the length of the cylin-
ders, occur at the ends.

The results obtained in the paper can be used in calculations for the strength and reliability of struc-
tural elements and machine parts of a similar type.
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JociiakeHHs] HANPYKEHOT0 CTaHy CYHUILHUX HMJIIHAPIB HEOMHOPITHOI CTPYKTYpH
3a pi3HUX rPAHUYHHUX YMOB HA TOPISX

' 0. 51. T'puropenxo, > JI. C. Poxok, ' H. I1. Bopeiiko, ' JI. B. XapuTonosa

'ucruryt Mexanixu im. C. T1. Tumomenka HAH Vkpainn,
03057, Ypaina, M. Kuis, Byn. Hectepoga, 3

* HarioHa IbHUI TPAHCTIOPTHHIT YHIBEPCHTET,
01010, Ykpaina, m. Kuis, Byn. M. OmensinoBn4a-IlaBienka, 1

Po3ss’azanns 3a0ay meopii npyscHocmi npo HANPYjHCeHUll CMaK HenepepsHo-HeoOHOPIOHUX minl nompedye y0o-
CKOHANEHHSL ICHYIOUUX | PO3POOKU HOBUX YUCENbHO-AHATIMUYHUX MEMO0i8, WO O0alomb 3M02y NOBHOIO MIPOIO 8PAXy8amu
008LIbHI 3ANEIHCHOCME GIACMUBOCIEL MAMepIiany 6i0 KOOPOUHaAm i Xxapaxkmep NPUKIa0eHo20 HasanmadcenHs. Cmamms
NPUCBAYEHA PO368 SA3AHHIO iCeCUMemPUYHOL 3a0ayi JHIUHOT Meopil NPYHCHOCMI NP0 PIBHOBAZY CYYLIbHUX, HEOOHOPIOHUX
630084C PAOdIANIbHOI KOOPOUHAMU YUNIHOPIG, 3d PI3HUX CNOCO0I8 3aKpIinieHHs mopyie. Ak mamepian oopano nonimepHuil
HenepepeHo-HeOOHOPIOHULL 13 2padicHmHum npoginem, wo 6i0n0sioac KEaAOpAMmuyHOMY 3aKOHYy 3miHu Mooy FOuea
6300860iC padianbHoi Koopounamu. Posensnymo mpu eapianmu 3aKoHy 3MiHU MOOYJISL APYIHCHOCTI (3POCMAIOYUU, CRAOHUL
ma ycepeoHeHuil) i 06a cnocoou 3aKpinieHts mopyie (wapuiphe oonupanus i scopcmie 3axpinienns). Memoio nyonikayii
€ NPOBEOeHHA HUCENbHO20 AHANIZY HANPYHCEHO20 CMAHY YUNIHOPIE OAHO20 KIACY 3ANIEHCHO BI0 3AKOHY 3MIHU NPYIHCHUX
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sracmusocmelt Mamepiany, 00BHCUHU YUTIHOPIG i cnocoby 3aKpinienus mopyis. Po3s 30k 3adaui bazyemuvcs nHa 3acmo-
CYBAHHI MemoOy CHIAUH-ARPOKCUMAYTT PYHKYIL 8 HANPIMKY NO3008AHCHLOI KOOPOUHAMU Ul YUCETbHO20 MOy OUCKPeni-
HoI opmoeonanizayii 3a padiarbHoio Koopounamor. Po3kpumo nesusnauenicms y ceomempuuno ocooausii moyyi r=0.
Ipoananizosano Hanpysicenuti cman YuniHOpis, Wo 8UBUAIOMbCA, 3A1eHCHO 8i0 3AKOHY 3MIHU NPYHCHUX XAPAKMEPUCHUK
Mmamepiany, 008AHCUHU YUTIHOPI8 | cnocoOy 3akpinaenns mopyis. Tlokasano, wo HAOIIbWULL 6NIUG 3AKOHY 3MIHU MOOYIS
IOnea na nanpyscenuii cman yuninopie cnocmepieacmocs 0151 KOIOBUX HANPYIHCEHb HA 308HIUUHIL NOBEPXHI 8 CEPeOHbOMY
nepepizi 00sdicuHU 0111 000X cnocobig 3axkpinienns mopyie. Kpim moeo, eniue mamepiany mae micye sk 0151 KOA0OBUX, MAK
i 01 padianbHUX HANPYXHCEHb HA MOPYsX Ok Kopomrux yuninopis (1=061y) 3a scopcmrozo cnocoby 3akpiniieHHs mopyie.
Topienano 3 ycepeOneHuM 3aKOHOM, IX GEIUYUHA SMEHULYEMbCS NPUOAUZHO Y 5 pazie O cnadno2o i 30inbulyemobcs npu-
onuzno y 3 pasu 0nia 3pOCmary020 3aKOHY 3MIHU MOOYIISL NPYACHOCTI. 30 YMOG HCOPCMKO20 3aKPINAeHHs. MOPYI8 MAlomb
Micye Kpailosi ehekmu Ha MOpYsix, KL 3a1exncamy 6I0 008XHCUHU YUNiHOpie. Ompumani 8 podomi pe3yribmamu MoxHCyns
6ymu BUKOPUCMAHE NPU PO3PAXYHKAX HA MIYHICMb eleMeHMI8 KOHCMPYKYIl ma 0emaneti MauuH nOOIOHO20 Mumny.

Knrwuosi cnosa: sicecumempuuna 3a0a4a, HANPYICEHULl CMAH, CYYLIbHI YUITHOPU, HenepepsHO-HeOOHOPIOHT Ma-
mepianu, yuceabHull Memoo.
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