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The reliability of a high-power turbogenerator largely depends on
its cooling system. The trouble-free and efficient operation of this
system, in particular the gas cooler, is a problem that has not
been fully resolved as of now. A modernized design of a gas cool-
er for a 325 MW turbogenerator, featuring high-finned bimetallic
tubes, is proposed in the paper. To substantiate the efficiency of
such a design and determine the heat transfer reserve of the gas
cooler, its thermal state was calculated. The obtained results
showed that the water overheating in the gas cooler is 5 °C. At the
same time, one section of the gas cooler provides heat loss re-
moval of 1266 kW at a hydrogen flow rate of 6.66 m’/s and a
cooling water flow rate of 200 m’/s, which meets the requirements
for this gas cooler.
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Introduction

The cooling system of a hydrogen-cooled turbogenera-
tor is technologically and structurally complex. The service life
of the units of other turbogenerator systems and ensuring its
trouble-free operation largely depend on its efficiency and reli-
ability. The tendency to increase the power of modern turbo-
generators necessitates the introduction of more efficient de-
sign solutions into cooling systems.

A synchronous three-phase hydrogen-cooled turbogen-
erator is designed to generate electrical energy when directly
connected to a steam turbine (Fig. 1). The main structural ele-
ments of the turbogenerator are given in the papers [1-3].

Cooling of turbogenerators with a capacity of 200— |m
350 MW is typically performed using hydrogen circulating in a

Fig. 1. General view of the turbogenerator

closed loop by means of a centrifugal compressor.The parameters of the cooling system must comply with
the requirements of DSTU (State Standard of Ukraine) EN 60034-6:2019 [4]. The overall design of the tur-
bogenerator and its cooling system must ensure effective cooling of structural components [5], as well as
maintain the temperature rise of the windings, stator core, and heated hydrogen within the permissible limits
for the specified insulation class in accordance with DSTU EN 60034-1:2016 [6], during nominal operation
of the turbogenerator.

To cool hydrogen, gas coolers are built into a special box under the stator housing of the turbogener-
ator. Their performance is an important factor in the turbogenerator cooling system, and their optimal design
can affect the overall efficiency, which is explained by pronounced changes in the thermophysical properties
of the cooling substances under operating conditions.

In addition, the reliable operation of the cooling system is one of the main factors that guarantees the
trouble-free operation of the turbogenerator as a whole. Its malfunction can lead to the failure of the turbo-
generator and, as a result, long and costly repairs.

The problem of ensuring the required level of temperature parameters of the structural elements of
turbogenerators when increasing their power during the modernization process is considered in this paper.
An essential condition for modernization is to increase the efficiency of the turbogenerator cooling system
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while maintaining the overall parameters of the gas coolers and ensuring their required strength. Existing gas
cooler designs do not satisfy these conditions [7].

Let’s analyze modern methods of designing gas coolers, set out in separate papers.

Thus, in [8] the authors evaluated the design of a gas cooler with finned tubes. Based on the model,
an assessment of different numbers of rows, lengths and diameters of tubes at different ambient temperatures
was made to determine the most suitable design in terms of pressure losses and ensuring the required heat
exchange area for the selected operating conditions.

In [9] the authors simulated and evaluated the thermohydraulic characteristics of a gas cooler with
finned tubes using a distributed modeling approach with the e-NTU method. The results of the study showed
that due to an increase in the mass flow rate of the working fluid and a decrease in the diameters of the tubes,
the performance of gas coolers increased.

The authors of [10] analyzed the performance of gas coolers with finned tubes and different inlet air
flow patterns using CFD methods. The modeling results showed that different types of inlet flow velocity
profiles of the cooling gas significantly affect the performance of the gas cooler.

In [11], the influence of the geometric parameters of gas coolers on the system performance was
studied. Parametric analysis confirmed the effective increase in heat transfer with an increase in the heat
transfer area of the gas cooler. However, the optimal cooling gas discharge pressure decreases. Other system
components remain unchanged.

In [12, 13], methods for calculating real gases for centrifugal compressors are presented. They in-
clude the use of several different polytropic path equations, as well as several numerical integration methods.

The use of flat tubes in the design of gas coolers was considered by the authors in [14]. The study
found that changing the cross-sectional configuration of the tubes is an effective approach to increase the
thermal performance of the gas cooler, which leads to a significant increase in the heat transfer coefficient.

In the abovementioned papers, the research of cooling systems is based on existing refrigerants such as
R404A, R134A or R407A. However, their main drawback is the lack of calculations when using hydrogen as a
cooling gas with increased operating pressure. Without additional research, these solutions cannot be scientifi-
cally substantiated and implemented on turbogenerators operating with an excess hydrogen pressure of 450
kPa. The reason for this is the need to use fully assembled turbogenerators with different designs of gas coolers.

Experimental values of the cooling gas parameters are used in the presented study.

The purpose of the study is to scientifically substantiate the provision of the necessary cooling pa-
rameters of the turbogenerator by the proposed design of the gas cooler. To achieve this goal, an analytical
thermal calculation was performed using mathematical models based on the basic equations of thermody-
namics and gas dynamics, taking into account the principles of the composition of engineering alloys. The
combination of brass and aluminum as the primary materials for the cooling tube design enabled an increase
in the gas cooler’s efficiency while maintaining overall dimensions, due to the enhanced effective finned sur-
face area, optimized fin pitch, and staggered tube arrangement.

To achieve the goal, the following tasks were set:

—to develop of a gas cooler design using a high-finned bimetallic tube design;

—to conduct a study of the efficiency of the gas cooler design with given geometric parameters of
the tubes.

Design of gas coolers of the turbogenerators

A general view of the turbogenerator gas cooler is shown in Fig. 2.

The detailed design of the gas cooler is shown in Fig. 3. It includes a tube bundle (a system of finned
tubes), a housing and water compartments [15, 16]. The tubes are hermetically connected to the end plates.
This prevents cooling water from penetrating the hydrogen flow. Covers with inlet and outlet pipes designed
for water supply are attached to the plates. The principle of operation is as follows: hot hydrogen (after pass-
ing through the heated structural elements of the operating turbogenerator) comes into contact with the sur-
face of the tubes through which cooling water circulates. After passing through the gas coolers, cold hydro-
gen enters the turbogenerator again.

The main materials of the housing and tubes can be different, depending on the installation condi-
tions and cooling water (fresh, mineralized or sea water). The material of the housing and covers is stainless
or carbon steel with a polymer coating. The material of the tube sheets is brass (or a metal or engineering
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alloy similar to its properties). The material of the cooling tubes is stainless or carbon steel, copper alloys,
aluminum, etc. The coating of the gas cooler must ensure a long service life (at least 40 years) and have
chemical resistance to hydrocarbons, solvents, acids, salts, alkalis, etc.

The studies presented in [17, 18] provide scientific justification for the use of tubes with expanded
surfaces or fins distributed along their length in the design of gas coolers of modern turbogenerators (Fig. 4).
Due to this, the effective surface area for heat exchange processes is significantly increased. Such modern-
ized gas coolers are actively used in repairs and modernization of turbogenerators to increase the efficiency
of the cooling system.

The general geometry of a high-finned tube is shown in Fig. 5.

Based on the results of the research presented in [19] and the analysis of the experience of gas cool-
ers production, it can be concluded that the design of the high-finned tubes is the most effective for use in the
production of gas coolers for large and medium-power turbogenerators.

HM

Fig. 3. Design of the turbogenerator gas cooler:
1 —top cover; 2 — bottom cover; 3 — frames;
4 — cooling tubes; 5 — tie rods; 6 — water drain/supply point

ik

Fig. 4. General view of the finned tubes
of the gas cooler Fig. 5. General geometry of a high-finned tube

Analytical calculation of the thermal state of a gas cooler

The purpose of the calculation is to determine the heat transfer margin of the gas cooler, which in-
corporates high-finned tubes of the proposed design, intended for a 325 MW turbogenerator.

To improve the operational characteristics, a bimetallic tube structure is used — a brass tube with
aluminum fins — which provides the necessary protection of the tube material against corrosion. An im-
portant factor when using a bimetallic design of finned tubes is to ensure the maximum possible contact be-
tween the coolants (water-hydrogen).

During the proposed analytical calculation, the heat flux through the finned tube wall was deter-
mined. For this, the geometric dimensions of the tube, tube sheet and coolant parameters were given. During
the calculation, criterion equations and dependencies, according to which the parameters for further three-
dimensional calculation can be described, were determined.

The design parameters of the tubes and tube sheet are shown in Figs. 6, 7. Other necessary initial da-
ta are presented in Table 1.
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Fig. 6. Tube parameters for gas cooler calculation Fig. 7. Tube sheet parameters for gas cooler calculation
Table 1. Calculation output data
Inner tube diameter di, m 0.01 Number of fins per 1 m of tube s, pcs 357.1
Outer tube diameter d, m 0.012 Finning coefficient 7.6
Outer finning diameter D, m 0.024 Tube material brass
Full length of the tube /, m 3.01 Fins material aluminum
Effective tube length /s, m 2.84 Thermal conductivity of the fins
. . 0.236
Heat transfer surface of 1 m material A,, kKW/m°C
2 0.258 -
of gas-washed tube f;, m Temperature of gas leaving 40
Heat transfer surface of 1 m 0.0314 the cooler 7,, °C
of water-washed tube fiash, m° ’ Temperature of water 36
Number of tubes in a row n, pcs 26 entering the cooler 7, °C
Number of rows in a section m, pcs 13 Hydrogen consumption Q,, m*/s 23
Number of tubes in the section n, pcs 338 Water consumption Q,, m*/h 600
Number of cooler sections N, pcs 3 Number of hydrogen courses ¢, 2
Distance between tubes in a row S;, m 0.032 Number of water courses g, 1
Row spacing S>, m 0.022 Absolute pressure of hydrogen P, kPa 450
Live cross-sectional area of 1 m? of cooler F1, m?> | 0.518 Hydrogen density p,, kg/m’ 0.3623
Finning pitch Sg, m 0.0028 Water density p,, kg/m’ 995
Finning height As, m 0.006 Allocated losses P, kW 3798
Finning surface area of 1 m tube f;, m? 0.269 Specific heat coefficient
- o 14.27
Tube cross-sectional area f;,, m> 0.000079 of hydrogen C,, kJ/(kg-°C)
Outer fin thickness, m 0.001 Number of sections connected 1
Inner fin thickness, m 0.0015 in series by water g

A diagram of heat transfer through a wall with straight trapezoidal fins is shown in Fig. 8.
The calculation method is given in detail in the studies [20, 21, 22]. Some of the criterion equations

necessary for the calculation are presented below.

Nusselt criterion for staggered bundles of finned tubes with
perpendicular flow of a gas medium around them. The average val-
ue for the bundle as a whole is calculated by the formula

Nu=036-C_-C, -y -Re"-Pr’¥,
where C: and C; are bundle geometry parameters; y is the tube fin-

ning factor; Re is the Reynolds number; Pr is the Prandtl number.
The finning efficiency is calculated by the formula

-1
n=1—"’7(l—nf),

where nie y is the finning factor; nris the fin efficiency parameter.
The finning ratio is calculated by the formula

*4

medium 1 medium 2

Fig. 8. Heat transfer diagram through
a wall with straight trapezoidal fins
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where Ftis the finning area; Fy.n is the area of the part of the finned side that is not covered by the bases of the
finning elements; Fuase is the area of the part of the finned side covered by the bases of the finning elements.
The results of the proposed calculation of the gas cooler based on the above data are given in Table 2.

Table 2. Results of analytical calculation of gas cooler

Heat removal surface of the cooler F,, m 825.9 Drop in water pressure 250172
Narrow cross-section of the cooler S,, m 1.892 in the cooler H,,, Pa )
Hydrogen overheating in the generator AT, °C 31.94 Specific heat capacity of water 4183
Average hydrogen temperature 7,2V, °C 64.0 at 20 °C, kJ/(kg-K) '
Kinematic viscosity CQefﬁcient 135%10 Overheating of water in the cooler AT, 5475
of hydrogen v at T,2°"¢° m?%/s grad
Thermal conductivity coefficient 4 Average water temperature
of hydrogen %, kW/(m-°C) LOSIO™ | | 7 averaee_gad 44.738
Hydrogen velocity in a narrow Kinematic viscosity coefficient 4
Cr}(,)ss—sgection Va, 1};1/s 12.16 of water v,,, m%/s 6.55x10
Reynolds number for hydrogen flow Re 1080.8 Prandtl number Pr,, 6.06
Euler number for hydrogen flow Eu 9.7 Thermal conductivity coefficient 0.000636
Hydrogen pressure drop in the cooler H,, Pa 921.4 A, kKW/(m-°C) '
Nusselt number Nu 12.5 Reynolds number for water Re,, 31967
Convective heat transfer 0.866 Internal heat transfer coefficient 12.08
coefficient o, kW/(m?-°C) ' Oint, KW/(m?-°C) )
Thermal resistance coefficient of finning £ 0.573 Relative heat transfer coefficient 053

. . B N 2.0 .
Finning efficiency coefficient 0.975 K, kW/(m*-°C)
Reduced heat transfer 19011 Average logarithmic temperature 15.69
coefficient Greaucep, KW/(m?°C) : difference in counterflow AT, grad ’
Water cooler tube cross-section F,,, m? 0.080 Heat load of the cooler K, kW/(m?*-°C) 0.293
Water velocity in pipes V.., m/s 2.094 Heat transfer reserve M, % 45.4

A detailed analysis of the data of the conducted study allows to conclude that the optimal ratio of the
working surface planes is 1 to 8. Further changes in the geometry and type of fins do not lead to a change in
the heat transfer margin by more than 5%.

From the above, it follows that the use of a high-finned bimetallic tube structure with the main geo-
metric parameters given in Table 1 was an acceptable solution. With these parameters, it was possible to
provide the necessary areas of the water-hydrogen heat-transfer surfaces (90 m? for water and 743 m? for
hydrogen) (Fig. 6).

Conclusions

1. As aresult of the research, a new gas cooler design, which provides the necessary heat removal ef-
ficiency when increasing the turbogenerator power to 325 MW, was developed. A distinctive feature of the
proposed gas cooler design is the use of high-finned bimetallic tubes with specified geometric parameters.

2. The efficiency of the gas cooler design with the specified geometric parameters of the tubes was stud-
ied and a scientific justification for ensuring the required efficiency of the proposed gas cooler design was pro-
vided. According to the analytical calculation of the thermal state of the gas cooler, the water overheating in the
gas cooler is 5 °C. One section of the gas cooler provides heat loss removal of 1266 kW at a hydrogen flow rate
of 6.66 m*/s and a cooling water flow rate of 200 m*/s. The obtained results satisfy the design requirements.

The main result of the study was confirmation of the high efficiency of using high-finned tubes in
the design of the gas cooler of a high-power turbogenerator.

A further direction of the study will be to use the results obtained using a numerical model to assess
the possibility of changing the design of the gas cooler in order to determine the optimal parameters of the
turbogenerator cooling system as a whole. The results obtained using the analytical model will be compared
with the three-dimensional calculation data using the k-¢ turbulence model to validate and quantify the mag-
nitude of the deviation between the three-dimensional modeling data and the analytical data.
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MigBuneHHs1 epeKTUBHOCTI CUCTEMH 0XO0JIOIKEHHS TypOOreHeparopa
IIJISIXOM BUKOPUCTAHHA B ra300X0J10KyBayi opedpeHuX TPYOOK

Bb. K. lllectak

HarmionansHmii aepoKOCMIUHHN YHIBEPCUTET «XapKiBCbKUHN aBiaiiHUNA IHCTUTYTY,
61070, Ykpaina, M. XapkiB, ByJ1. Baguma Mannpka, 17

Haoitinicms mypboeenepamopa eenuxoi nomysjcHocmi 6a2amo 6 4oMy 3a1exHCums Gio 1020 cucmemu 0Xo.o-

Oorcennsi. besasapiiina i epexkmuena poboma yiei cucmemu, 30Kpema 2a300X010024cy8aud, € nPpooaeMor0, KA He NOGHIC-
mio eupiuena Ha menepiwnii wac. Y cmammi 3anponoH08aH0 MOOepHi308aHy KOHCMPYKYIIO 2A300X010024Cy8a4a Oisl
mypboeenepamopa nomyaicuicmio 325 MBm, 6 ikomy 8UKOpUCOBYIOMbCsL OiMemanesi mpyoKu 3 6UCOKUM OPEOPEHHSIM.
Jlna obrpyHmyeanHa eghekmuHoCmi maxoi KOHCMPYKYii ma 8UsHAYeHHs 3anacy menionepeoati 2a300X01004Cy8aya npo-
8€0€HO PO3PAXYHOK 11020 menniogoco cmany. Ompumani pe3yaibmamu nOKA3au, wo nepezpie 600U 8 2a300X0100H#CY6aUi
cmanosums 5 °C. Ilpu yvomy oona cexyis 2az00xon00xcysaya 3abesneyyc giogedents mennogux empam y 1266 kBm npu
sumpamax 600mio 6,66 m*/c i oxonodarcyiouoi 600u 200 m/c, wo 3a00601bHAE BUMO2AM OO YbO20 2A300X0N00HCYEAU.

Knrouogi cnosa: mypbocenepamop, 2azo00xon000icysay, opedpeni mpyoxu, menioguti po3paxyHox, KpumepiaibHi
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