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In aerospace and mechanical engineering, elements that are loaded by
periodic loads (periodic function) are used. In problems for a layer with
cylindrical inhomogeneities, it is difficult to take such loads into account.
Therefore, there is a need to develop a methodology for calculating the
stress state for a layer with a cylindrical cavity and taking into account
the boundary conditions in the form of a periodic function. In this paper,
we propose a solution to the problem of elasticity theory for a layer with a
cylindrical cavity within the framework of the generalized Fourier meth-
od. Stresses are given at the upper boundary of the layer and on the sur-
face of the cylindrical cavity, and displacements are given at the lower
boundary of the layer. The layer and cylindrical cavity are considered in
different coordinate systems (Cartesian and cylindrical). The redistribu-
tion functions of the generalized Fourier method are applied to the Lamé
equations. The problem is reduced to the sum of two solutions — an auxil-
iary problem and the main problem. Both problems are reduced to infinite
systems of linear algebraic equations, which allow the application of the
reduction method to them. After finding the unknowns in the auxiliary
problem, the stresses at the geometric location of the cavity are found.
The main problem is solved for the layer with the cavity, on which stress-
es obtained from the auxiliary problem are set with the reverse sign. The
complete solution consists of the auxiliary and main problems. Having
calculated all the unknowns, it is possible to obtain the stress-strain state
at any point of the body with a given accuracy. Numerical analysis of the
stress state showed high accuracy of the boundary conditions and de-
pendence on periodic loading. Thus, the stresses ox and o. at the upper
boundary of the layer have extremes in the places of maximum values o
and their negative values increase at the location of the cavity. At the
same time, the stresses oy exceed the specified o;.

Keywords: periodic loading, layer with a cylindrical cavity, Lamé equa-
tion, generalized Fourier method.

When designing various types of technological equipment in mechanical engineering, structures in

aircraft, and during construction, it is often necessary to take into account periodic loading. However, this is
associated with a number of difficulties. This statement is explained by the fact that one of the main features
of this type of loading is its infinite nature, which cannot be taken into account by software packages based
on the finite element method [1, 2].

Another problem is the calculation of elements with cylindrical inhomogeneities. Much attention has
been paid to this area of research. Nowadays, there are a number of classical papers devoted to the analytical
and analytical-numerical solution of problems for a half-space and a layer with a cylindrical cavity [3-5].
However, the proposed classical methods, based only on the Fourier series expansion, consider the problem
either in a flat form or with fewer than three boundary conditions.

A number of papers consider problems for a layer with inhomogeneities perpendicular to it [6—11].
Thus, in papers [6] and [7], scientists studied the layer, simplifying the contact conditions on its upper and
lower surfaces. However, this approach does not allow to study a layer with a cylindrical inclusion or cavity,
since the use of integral Laplace and Fourier transforms leads to the formulation of a mathematical problem,
the solution of which is exclusively the problem of wave diffraction and does not take into account the ge-
ometry of the inclusion/cavity.

The use of the genetic algorithm (GA), the gravity search algorithm (GSA) and the Bat algorithm (BA)
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for the analysis of the stresses of a perforated plate, as done in paper [8], provides only an approximate solution.

The problem of torsion of an elastic half-space containing a vertical cylindrical cavity and loaded by a co-
axial stamp is considered in paper [9]. To solve this problem, the authors developed two original methods that al-
low reducing it to ordinary integral equations of the second kind. Despite the novelty of the approach, the obtained
solution is approximate and shows some deviations from the solution known as the Reisner-Sagoci problem.

In [10], an analytical method for calculating composite laminated perforated plates based on the lay-
er-beating method was proposed. The effectiveness and accuracy of this method were confirmed by compar-
ing the obtained results with the results of finite element analysis. Another paper [11] is devoted to the study
of torsional vibrations of a flat round stamp in contact with a multilayer elastic base containing a vertical cy-
lindrical cavity. To solve this problem, the Weber integral transformation and the method of paired integral
equations were used. It is important to note that the mentioned methods [10, 11] cannot be applied to solving
problems with inhomogeneities located parallel to the layers.

For problems with a longitudinal cylindrical cavity, it is proposed to use the generalized Fourier meth-
od [12]. Its effectiveness was proven in papers [13—15] for a cylinder with cylindrical cavities or inclusions, in
which the solution is presented as a superposition of the basic solutions of the Lamé equation for cylindrical
geometry, where each coordinate system is connected with the center of the corresponding boundary surface of
the body.

A mathematical justification of the formulas for the transition between the Cartesian and cylindrical
coordinate systems in the problem for a half-space with a cylindrical cavity is given in paper [16].

The problem for a layer with a cylindrical cavity in displacements was solved in paper [17], with the
cavity in stresses — in [18], and of mixed type — in [19]. However, the methods proposed in papers [17-19]
can only take into account rapidly decreasing functions at the boundaries and are not able to take into ac-
count infinite ones, such as periodic functions. Consideration of periodic displacements in the second basic
problem (in displacements) for a layer with a cylindrical cavity was proposed in [20].

This paper is aiming to:

— create a method for solving a mixed problem of the theory of elasticity, when a periodic stress
function is given on the upper boundary of the layer, displacements — on the lower boundary of the layer, and
stresses — on the cavity;

— analyze the stress state of the layer.

Problem statement
The model is a layer with a cylindrical cavity (Fig. 1). ~
The layer is considered in the Cartesian coordinate sys- | : = FUGx, 21y
tem (x, y, z), the cavity is considered in the cylindrical coordinate |*
system (p, ¢, z), which is equally oriented and connected to the

coordinate system of the layer. The distance from the center of FU(9,2)jp=r \ﬁ x.2)
coordinates to the upper boundary of the layer is 4, and to the B =
lower boundary it is % . The radius of the cavity is R. Fig. 1. Layer with a cylindrical cavity

The stresses FU (x, z)‘ yeh = Eo(x,z) are given at the upper boundary of the layer, displacements
= }0 (x, z) — on the bottom one, stresses FU (@, z} DR = F{P(,z) — on the cylindrical cavity, where

];ho (x,z) = ’Egﬁ) e+ G(yh) e, + ’EEZ) ‘e, ;

Fx,2)=0" 2 +ul).5 Uz,

F()(‘”)((p,z)zcp €+ T, €, T, €

z

— known functions.

(n (hy  ~(h)
v Oyts Ty

rapidly decreasing along the z-axis. Other given functions are rapidly decreasing to zero along the z-axis for
the cavity, and along the x- and z-axis for the lower boundary of the layer.

Functions t c given on the upper boundary of the layer are periodic along the x-axis and
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Solution method
Solution of the Lamé equation Aii +(1—2c) ' Vdivii =0 is given as the sum of solutions of two

problems U =U, +U,.
First problem (U o) — auxiliary, it is introduced to take into account the given function of periodic

stresses. In this case, a layer without a cylindrical cavity and with periodic stresses given at the upper bound-
ary of the layer, and with zero displacements — at the lower boundary of the layer, is considered. The solution
has the following form:

3 o0 00
Oy =3 [ [0 07 oz, )+ OG- (5720, n

where H ]Eog (k), H ,EO (k) are unknowns that must be found from the boundary conditions of this auxiliary
problem; u ,E”(x, V,Z; A, u) i ﬁ,gf)(x, V,Z; A, u) are basic solutions of the Lamé equation for the layer [12]:
i} (x, y, 20, 1) = N\t =1 2,3 2)
1

Nf"):xv; N = i(v 1)é ()+iv( ); Ng")zirot(éz(l)-); y=AR2 4’ —o<hpu<w; &, é,, 6. —

are Cartesian coordinate system orts ; v is the Poisson's ratio.

To create a system of equations, we substitute the known functions r(y’? , (yh) , (y’? into the left-hand
side of (1), having previously represented them through a Fourier series along the x-axis, and a Fourier inte-
gral along the z-axis

Fx2)= [ 36,0um-e .,

—och=—0C

where
14 oc
. _ 1 =0 —i(W,Xx+Az) .
&0um=7 :de L Fo(x,2)-e dz ; 3)

20 is the period of function; p, =nn//.

Having freed the right and left parts from series, integrals and e/ eh?)

algebraic equations for finding H ,EO), ), H ,EO), ()

, we obtain a system of linear

2H,§°,3 (M) dS (B )+ ZH“” (M) d- (hhp,) =&, (A n)
, “4)
ZH,E?,Z ()-d; (hsh,p,) + ZH,E?,Z () d; (<h5hop,) =0
s=1 s=1
where d*(y;h,u,) =N .
Equation (4) is projected onto the coordinate axes (the projections are equated with respect to the ba-

sis vectors e, e,

e, ), resulting in expressions for H 1502 (1) and I-NI (0) (%)

304, . 3
kJ (= A 2 k +3
HO0)= =06, 0um))-2, 0 A= 722(6,0um)-2, .
k=1 k=1
where j =1, 2, 3; A1..6,1..6 is the algebraic complement of a system of equations; D — determinant of the sys-
tem of equations.

After determining the unknowns H 1502 (1) and H ]Eog (1), the stresses at the geometric location of the

cavity are found. To do this, the transition formulas from the basic solutions of the layer (ﬁ,(c and 7! ) are

applied to the internal basic solutions of the cylinder (Ek,m ) [12]
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i) (x, y,2) = M50 wi(,-.w:) s k=1, 3);
()(x ¥,z = W” IR Z[l o:) A m u+yp 73) I?Lm iy-l?z’m+4u(l—c)133’m)],
where zik,mzzf (p,.2)-e e +32) l;l’n(p,k):ép-I;(Xp)+i~1n(7up)-(é¢%+62];

s (p.0)= 2, -[40-3)-1,0)+ 2 T2 op ]+ 2,1 m[z 60+ 2001, 09) 201, 00):
p

Zs,n (p.2)= _[gp 1, (p )% +€,-i (kp)} s € € are cylindrical coordinate system orts.

Having got rid of the integral over A and ¢'***"™ | stress at the geometric location of the cavity was
obtained
3 3 Ak '
2| g Rem 1) £, () D= (m)) |+
- s=1 k=1 D
ZCROE 3 ,
n=-x Tm Ak s+3 /=
+Z[r,,,_,(R;m,x)-ﬁ,n(x,un)-Z’T(ch(x,n)>J
s=1 k=1
I 0 (0 o). 1 0 (0 )
m . n | muoy 4ull ) n | MU vy 4ull-o)].
where £" (h,1)=(i-o_(h,p))"- PO b s 0uw)= (-0, (L w)" 2T Tz |
0 0 1 0 0 1

1, ;(R;m,\) is the tensor obtained by applying the stress operator to Rk,m 5 G (k,n) — given in formula (3).
The main problem (U 1) considers a layer with a cylindrical cavity with stresses given on the surface

of the cavity with opposite signs h 9 (p,1) . Solution for U looks like this [19]:

=ZI S By (02)+ Sy (020 )+

—oc M=—0C

3 oCc  oC
N jH (b)) (2,20 )+ H Oy ) -7, 7300 )- it

k=1~

where H,(A,p), H s, B,,(h) are unknowns that need to be found; i”(,y,z;A,1n) and

i (,y,2;\,1) are basic solutions (3); gkym(p,(p,z;l) are basic solutions from outside the cylinder [12]
Sin(P,0,230) = NP |(sign 1) K, (- p)-e @m0 | k=1,2,3;

1 1 0 ~2) O i (=
Nl(p) = xV ; ng) =I{V(pa—pj+4(v—l)(V—e§2) gﬂ, N3(”) =xrot(ez(2) -); —W<A<©O.

The method for solving this basic problem is the same as for [12].

After finding all the unknowns for U, o, and U |» it 1s possible to obtain the stress-strain state at any
point in the layer by applying the formulas for the transition of basic solutions between the Cartesian and
cylindrical coordinate systems.

Numerical studies of the stressed state
The elastic isotropic layer has a cylindrical cavity with radius R=10 mm (Fig. 1). Physical character-
istics of the layer: aluminum plate D16T, Poisson's ratio v¢=0.3, modulus of elasticity E¢=7.1x10* MPa. Ge-

ometric parameters of the model: /= i =16 mm.
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At the upper boundary of the layer along the x-axis, a periodic stress function is given in the form of
triangles along the x-axis and in the form of waves along the z-axis

x —
G(yh)(x,Z)z -(I-EJ.(IOA‘.(ZZJFIOZ) 2),at OS|X|S2
0, at 2<|x|<7t

() _ o) _

The other parameters that are set include: tangential stresses 1, =71, =

0, displacements

U )(Ch) =U f) =U £’7 ) on the lower boundary, stresses fo’ ) =’EE)’:P) = rsz’) =0 on the surface of the cavity.

Function G(yh)(x, z) image through the Fourier series along the x-axis and the Fourier integral along the z-

o0

N2
axis has the form f(x;A,n)= _[E[% + Z( s nj cos nxﬂ . [2,5e7‘k‘10(|7u|10 + 1)]
T

n

n=1

The infinite system of equations was reduced to a finite one along the parameter m=6 and n=35. The
accuracy of fulfilling the boundary conditions for the specified values of the geometric parameters is 10 for
values that are equal to zero.

Stresses o and o. on the upper boundary of the layer, which arise under the action of a periodic
function o, given on this surface are shown in Fig. 2.

Periodic loading at the upper boundary of the cylindrical cavity leads to the development of com-
pressive stresses ox and o: (Fig. 2). The stresses ox have a maximum value Oy max=—1.1689 MPa at x=0,
which exceeds the given 6,=1 MPa. This is due to the concentration of three triangular loads from the peri-
odic function in the cylindrical cavity area.

From Fig. 2 it can be seen that the negative values of the stresses o, and o: in the cavity area increase
significantly.

The stresses o, and o: have extrema at the places of the maximum values o, (Fig. 2). At 6,=0, the
stresses oy acquire positive values.

The stresses oy and o at x=0 on the upper boundary of the layer along the z-axis are shown in Fig. 3.

At z=0, the stresses oy reach their maximum value (Fig. 3), which coincides with Fig. 2. Regardless
of z, these stresses are always compressive.

The stresses o, in addition to negative values in the maximum load zone, have positive values in the
damping zone o,. The difference between the functions along the x-axis and along the z-axis also affects the
difference between the maximum values of the stresses o, and o (Fig. 3).

The stresses o, and 6. on the surface of the cylindrical cavity at z=0 are shown in Fig. 4.

On the surface of the cylindrical cavity, the stresses 6, reach their maximum values at angles (¢=0.585
and ¢=2.55, Gy max=0.49727 MPa (Fig. 4). At ¢=m/2, the stresses G, have positive but minimal values.

The stresses o: on the surface of the cylindrical cavity reach their maximum values at p=n/2 (Fig. 4).

The stresses o, G, and o at the neck between the cylindrical cavity and the upper boundary of the
layer are shown in Fig. 5.

At y=10 the stresses 5,=0.00003, at y=16 the stresses 5,=0.99995 (Fig. 5), which corresponds to the
given and coincides with the stresses 6, with an accuracy of 10,

The stresses 6, and o have extreme values at y=10 and y=16 (Fig. 5), which coincides with the val-
ues in Fig. 3 and Fig. 4.

The distribution of stresses c,, G, and o along the neck has a nonlinear character.
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Fig. 2. Stresses o and o on the upper boundary of the  Fig. 3. Stresses ox and o on the upper boundary
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Fig. 4. Stresses op and o on the surface Fig. 5. Stresses op, 0p and o from the cavity surface
of the cylindrical cavity to the upper boundary of the layer along the axis y
Conclusions

A method of consideration of periodic loads in a mixed problem of the theory of elasticity for a layer
with a cylindrical cavity within the framework of the generalized Fourier method is proposed. The given auxil-
iary problem makes it possible to expand the given function into a Fourier series instead of integrating it.

The stress state for a layer with a cylindrical cavity is found for the given stresses (periodic function) on
the upper boundary of the layer, displacements on the lower boundary, and stresses on the surface of the cavity.

The analysis of the stress state showed its dependence on the periodic loading. Thus, the stresses o
and . on the upper boundary of the layer have extrema at the locations of the maximum values oy, and their
negative values increase at the location of the cavity. The stresses o, in this case exceed the given G,.

The problem is reduced to the sum of two solutions — the auxiliary problem and the main one. Both
problems are reduced to infinite systems of linear algebraic equations, which allows the application of the re-
duction method to them. Basic solutions in different coordinate systems are combined using the analytical-
numerical generalized Fourier method. This allowed obtaining a solution to the problem with a given accuracy.

The proposed solution method makes it possible to obtain the results of the stress-strain state for air-
craft structures, building structures, technological machine-building lines, the loads on which are given by
periodic functions.

In the future (in order to develop the specified research topic), it is necessary to consider models
with cylindrical inclusions, as well as with several cylindrical cavities.
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B aepoxocmiyniti eanysi i mawuno6y0y8anui 6UKOPUCMOBYIOMbCA eleMeHMU, HABAHMANCEHHS HA AKI ONUCy-
embuest nepiooudnumMu Qynxyiamu. Y zadavax ons wmapy 3 yuriHOpUYHUMU HeOOHOPIOHOCAMU 8PAXYBANHS MAKUX HABA-
HMAadiCeHb € CKIAOHUM. 3 021510) HA Ye ICHYE HeOOXIOHICMb CIMBOPUMU MEMOOUKY PO3PAXYHKY HARPYICEHO20 CIAHY 05
wapy 3 YuaiHOPUYHO NOPOICHUHOIO, 3d KO0 OpAUcs 00 Yeacu Ul epaHudHi yMosu y 8ueisioi nepiooudnoi gyukyii. ¥V
pobomi 3anponoHOBAHO PO38 A3AHHA 3a0aui meopii NPYHCHOCMI Ol WApy 3 YUNIHOPUUHOIO NOPOHCHUHOIO Y PAMKAX
y3azanvhenozo memoody @yp’e. Ha eepxuiti medxici wapy i Ha nOGepxXHi YURTHOPUUHOT NOPOICHUHU 3A0AHT HANPYIHCEHHS,
a Ha HUCHI Medici wiapy — nepemiujenns. Lllap i yuninOpuuna nopodscHuHa po3eisioarmvCs @ pisHUX CUCMEMax Koop-
Oounam (y oekapmosiil ma yuniHOpuyHiti). /[o piensans Jlame 3acmocosyromocs GyHKYii nepepo3nodiny y3a2aibHeH020
memody @yp’e. 3adauy 36e0eno 00 cymu 080X po38 sa3Ki6 — 000amKosoi 3a0aui 1 ocHosHol. OOudsi 3a0aui 36edeni 00
HeCKIHYeHHUX cucmem JIHIUHUX aneeOpaiyHux pigHanb, 00 AKUX OONYCKAEMbCA 3aCMOCY8ants memody pedykyii. Ilicra
3HAXOOJICEHHS HEBIOOMUX Y O00AMKOBIl 3a0ayi OOUUCTIOEMbCS HANPYICEHHS 8 MICYI 2eOMEMPUUHO20 PO3MAULYBAHHSL
nopooichunu. OCHo8HA 3a0aua po38 ’a3yemvcsl OISl Wapy 3 NOPOACHUHOIO, HA KU 3a0ani 3i 360POMHIM 3HAKOM HANPY-
JICEHHS], ompumani 3 0o0amxosoi 3adaui. Ilosne piuienns ckiadaemuvcs 3 000amKo8oi ma ocHoHoi 3aday. Pospaxysa-
BULU 8CT HEBIOOMI, MOJICHA OMPUMAMU HANPYIHCEHO-0ehOPMOBAHULL cmaH Y 6Y0b-aKill mouyi mina i3 3a0anoio mouHic-
mio. YucenvHuil aHaniz HANPYHCEHO20 CIMAHY NOKA3A8 BUCOKY TMOYHICMb BUKOHAHHA SPAHUYHUX YMO8 I 3a1eHCHICMb i0
nepioouunozo Haganmasicents. Tax, HaNPys*CenHa Ox Ma O HA 8EPXHILL MedHCi Wapy Maromes eKCmpemymu 8 Micysax Max-
CUMATbHUX 3HAUEHDb Oy i 30i16UYI0MbCA iX 810 €EMHI 3HAUEHHA 8 Micyi po3mauly8anusa nopodcHunu. Hanpyocenna ox npu
YbOMY nepesunyioms 3a0aHi oy.

Knrouogi cnosa: nepioouune HA8aHMAdXiCEHHs, wap 3 YUITHOPUUHOIO NOPOICHUHOTIO, pigHsants Jlame, y3azanbHenuil
Mmemoo Dyp’e.
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