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UDC 539.3 A spatial problem of elasticity is solved for a layer with n longitudinal cylindrical cavi-

ties, two of which contain thick-walled pipes in smooth contact with the layer. Stresses
FIRST BASIC are given on the surfaces of the layer, the inner surfaces of the pipes, and the cavities. All
PROBLEM canonical surfaces do not intersect each other. The material of the layer and cylindrical
OF ELASTICITY pipes is homogeneous and isotropic. An analytical and numerical calculation method,

which assumes the fulfillment of statics conditions (for the first basic problem of elastici-
THEORY ty theory) and is based on the Lamé equation, is proposed. The basic solutions of the
FOR A LAYER Lamé equation are taken in a form that makes it possible to obtain an exact solution for

a separate boundary surface in each separate coordinate system. The basic solutions in
WITH CYLINDRICAL these coordinate systems (Cartesian for the layer and local cylindrical for the cylindrical

CAVITIES inhomogeneities) are interconnected through the mathematical framework of the gener-
SMOOTHLY alized Fourier method. The fulfillment of boundary conditions on the upper and lower
CONTACTING surfaces of the layer, on the inner surfaces of pipes, on cylindrical cavities, as well as the

consideration of interface conditions, create an infinite system of integro-algebraic
TWO CYLINDRICAL equations, which is reduced to an infinite linear one. In the numerical study, the reduc-
BUSHINGS tion method is applied to the resulting infinite linear algebraic system of equations. The
solution of the system of equations gives the values of the unknown functions. Numerical

calculations have shown the rapid convergence of approximate solutions to the exact
one. The numerical analysis of the stressed state of the layer and thick-walled pipes
showed that the use of polyamide bushings has almost no effect on the stress-strain state
of the structure (compared to their absence), the use of steel bushings reduces the stress
National Aerospace in the body of the layer in the areas of their location, redistributing the stress to the
University bushings themselves. The proposed solution method makes it possible to obtain the
"Kharkiv Aviation Institute” stress—ivtrain state' of structures containz:ng cylindrical cavitie's and bushings, and the
17, Vadyma Manka str., Kharkiv nL.tme'rzcc'zl al?al)/SIS allows to assess t'he influence of tﬁe material on the values of stress
61 b 70, Ukraine ’ > | distribution in the structures of machines and mechanisms at the design stage.
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Introduction

Bushings are important components in mechanical and aircraft engineering, they are used to reduce
friction between moving parts, provide stability and alignment, help prevent wear and damage to critical
structural components. Bushings are used in hinge joints of control surfaces to ensure smooth and controlled
movement, to attach the engine to the airframe of an aircraft, reducing vibration and transferring loads. They
are installed at the joints of rods and levers that transmit forces from the control units to the control surfaces.

They are also used to strengthen parts with holes. This is especially important in cases where the part
is subjected to significant loads, and the hole weakens its structure. A bushing installed in a hole distributes
the load over a larger area, reducing stress concentration around the hole. In some cases, bushings are
installed to ensure a more accurate fit of connecting parts in holes. This is important in mechanisms where
high positioning accuracy is required. Bushings are also used to repair damaged or worn holes.

In mechanical and aircraft engineering, high-strength and wear-resistant materials are used to
manufacture bushings that can withstand extreme operating conditions, including high and low temperatures,
significant loads and vibration, and are also able to reduce noise and increase comfort. The main materials
include: steel, bronze, aluminum, Teflon, polyamide and other polymers.

Models of a number of structures can be represented in the form of a layer with cylindrical pipes and
cavities. When designing such structures, it is necessary to have a distribution of stresses in their individual
parts. However, computational models of such connections often turn out to be complex and cannot be
calculated by classical analytical methods [1-3], which consider the problem either in a flat formulation or
with a number of boundary conditions, not more than three.

This work is licensed under a Creative Commons Attribution 4.0 International License.
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Another approach that is often used to calculate these structures is numerical methods: the finite el-
ement method [4-6], the boundary element method [7], the finite difference method [8]. However, they are
approximate and have a number of known drawbacks: the inability to take into account infinite elements,
approximation errors, problems of convergence and stability of the calculation, significant computational
resources, the inability to obtain an analytical expression that would describe the dependence of the solution
on the parameters of the problem, sensitivity to the choice of initial conditions. It is also important to have a
theoretical understanding of the problem or the results of field tests [9, 10] to interpret the numerical results.
Analytical-numerical methods are hybrid approaches to solving problems and include both analytical (exact)
and numerical (approximate) methods. These methods are often used to obtain more accurate results in com-
plex problems where a purely analytical or purely numerical approach may be ineffective or too complex.

An example of a hybrid approach is the paper [11], where the displacements for the calculation of
composite plates under impact loading are experimentally determined, after which the displacement vector
parameters for each layer are expanded in a power series in the transverse coordinate. However, this
approach cannot take into account longitudinal cylindrical inhomogeneities.

The solution of the problem of a layer with a perpendicularly located cylindrical cavity, presented in
the papers [12, 13], is based on integral Laplace transforms and finite Fourier transforms. However, this
method does not allow the analysis of systems with more than one cylindrical cavity.

In [14], metaheuristic algorithms and analytical methods were used to optimize thermal stresses in
composite plates with non-circular holes, but this method cannot work with more than one cylindrical cavity.

The calculation of a layer with several cylindrical inhomogeneities located parallel to its boundaries
is effectively carried out using the analytical-numerical generalized Fourier method [15], which is based on a
combination of basic solutions of the Lamé equation in different coordinate systems. It has already been used
to solve problems for a cylinder with cylindrical cavities [16, 17] and inclusions [18]. In [19], the
justification of the formulas for the transition between the Cartesian and cylindrical coordinate systems is
presented on the example of a half-space with a cylindrical cavity.

Problems for a layer with one cylindrical cavity using the generalized Fourier method in
displacements are solved in [20], in stresses — in [21], or they’re considered as mixed problems [22].
Problems for a layer with one pipe are solved in papers [23, 24]. However, the methods used in [20-24] do
not allow solving the problem for several cylindrical inhomogeneities.

In paper [25], the method was developed and solved for a layer with two cylindrical cavities, and in
[26] — with two cylindrical pipes under mixed boundary conditions. In paper [27], a solution of the first basic
problem of the elasticity theory for a layer with two cylindrical pipes is proposed. However, the approach
presented in [26, 27] does not allow taking into account additional cylindrical cavities.

Considering the abovementioned factors, the search for methods for solving problems for a layer
with cylindrical bushings and cylindrical cavities is relevant.

The purpose of this paper is:

— creation of a method for solving the first fundamental problem of the elasticity theory (in stresses) for
a layer smoothly contacting two longitudinal cylindrical tubes and weakened by # cylindrical cavities;

— determination of the stress state of a layer with one cylindrical cavity and two thick-walled pipes un-
der balanced loading;

— determination of the influence of the presence of cylindrical bushings on the stressed-deformed state of
the layer by conducting a comparative analysis with the option with cavities instead of thick-walled pipes [28].

Problem statement

The model under study consists of a layer in which two thick-walled cylindrical pipes and # cylindrical
cavities are located parallel to its boundaries (Fig. 1). The pipes and cavities are considered in local cylindrical
coordinates pp, ¢,, z, where p=1 denotes the first pipe, p=2 — the second one, p=3...n+2 — cavity with number
p — 2. The layer is considered in the Cartesian coordinate system (x, y, z), which coincides with the coordinate
system of the first pipe (p=1). The outer radii of the pipes and cavities are denoted by R,. Internal pipe radii —

rp. Distance from the center of the Cartesian coordinate system to the layer boundaries is y=h and y=-/ .
The stresses are given: at the upper and lower boundaries of the layer
FU(x,z) =Fh0(x,z); FU(x,z)‘y}; =ﬁ;(x,z),

|y=h

52 ISSN 2709-2984. Journal of Mechanical Engineering — Problemy Mashynobuduvannia, 2025, vol. 28, no. 3



JNHAMIKA TA MIITHICTb MAIINH

where
ﬁ'ho(x,z)z I(y}j‘) e, +G( ).é e, +’E( ). -e_; F}?(x,z)z I(y};)-éx +cs(yh)-éy +t(yhz)-éz ; (1)
on the inner surfaces of the pipes the following stresses are given
FU(()”)((pp,z)‘pFR (p)e +r(p)e +’E(p) e ;p=1,2; )
on the surface of cylindrical cavities
FU(%,Z}W, p, = Fp(@,,2) =08, + TE, + T p=3, ., nt2, 3)

where 7 is the number of cavities; U is the displacement in a layer;

FU =2G6| —>—ii- divU+iU +l(ﬁ X rotU) is the stress operator.
1-2c on 2

The layer is connected to each pipe via interface conditions

Ung(@:2)|, _, =Upp(@,02)],
co,p(cpp,z)\pp:& = cp,p(cpp,zﬂpp:&

TO,pq)((Ppaz)‘pp -R, =0

)

Tppo(Pps Z)‘pp R,

To,pz (¢ prZ )‘p r 0 Fig. 1. Layer with two cylindrical thick-walled pipes
e and cylindrical cavities

TP"’Z((pP’Z)‘p,,:RP =0

where U, (¢,,z) are normal displacements for the layer; to are — tangential stresses for the layer;
U,,(0,,z) are normal displacements for pipes; 1, are tangential stresses for pipes.
In this case, based on the static conditions, the equilibrium equations must be satisfied
”ﬁ(M)dc =0; ”; x F(M)ds =0,
(o) (o)
where ¢ = {cs1 vo, uo3}; o1 is the plane at y=h; o> is the plane at y= -h ; 03 is the cylinder surface p=R,,
ﬁho (x,z)at o,
FM = ﬁ;(x, z)ato, ; r is the radius vector of p. M.
F, Y (,z)at oN
All the given functions are assumed to decrease at infinity.

Solution methodology

We seek the solution of the Lamé equations in the form
n+2

ZZI 232’2 M) S (P>, 20 )dh+

p=l k=1 _on m=—c0

3 00 00
e [l 0om) @230 )+ 1, o) 50 (e, 2300l (5)
k=1 _oo-o0
3 © o
U= [ 240,00 BP0, 50 + 40, (1)- 5, (91,01, 50 1 (6)
k=1 _oom=—0
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where U, is the displacement in the i-th pipe; H,(L,u ) (% u) b1% )( 1), A,({’Zn ), A(’) .(A) are unknown

functions that need to be found from the boundary conditions (1) — (3) and the interface conditions (4);

S’k (P10, Z3A), Ek,m (P,9,230), L?,£+)(x,y,z;7», p), L?,E_)(x,y,z;},,u) are basic solutions of the Lamé equa-
tion, which are given in the form [15]:

ﬁ,f(x,y,z;?»,u)z

Ry (po0.2:2) = NI, )™ 5, (p.0,2:0) = NP |(sign)” K., (1o)€' ] =1, 2, 3;

1 4 1 i (=
N =V N = Sv-1)e e+ — V(): N =Kr0t(e3(1) );
1 1 0 0 i
NP =—v; NP =—|\v| pZ |+ 4(v=1)\v-2® )= | ; NV =Zrotle®); y= 2 +p% ; o<t p<o,
1 2 2 X p op ( )( 3 ) o 3 2 ( 3 ) Y u n
where v is the Poisson's; 7,(x), K.(x) are modified Bessel functions.
To write equations (5) and (6) in the same coordinate system, the transition formulas between the

basic solutions of the Lamé equation [11] were applied:
— from the external solutions for the cylinder S, . to solutions for the layer uk

N]({d)ei(kﬂpx)iryy :

) (at y>0) and "

(at y<0)
S (p ¢ Z'k)= o) .Toa’"-e_i“x"iyyn.ﬁ(ﬁ_@ k=1. 3:
km \F p>¥p>=s 2 ¥ k v K
oy © 2 - ) i _jwfpiyyp
Sunlpr 0y x):( ;) jmf.[(im.u_k_ﬂzz’}ﬁl@)Trkzﬁ?)ﬂu(l—c)ﬁ@)'w (7
—o0 Y y

where y =\ +p*, mi(?u,u):MTiy, m=0,£1+2,... ;

— from solutions for the layer u, ,£+) and ﬁ,gf) to internal solutions for the cylinder I?k,m

['e]

i (e, y,2) =" Y (10 )" Ry A1 3

m=—ow

ﬁgi)(x,y, oM, z[l o, m, - m H+yp }f) = +4u(l G)R )] (8)

where Ry, =by ,(p,. 1) ¢ ) by, (p0)=2, -1 0p) 4101, (w)-(%%%j |

bolp) = 0= 100) otz ool ion| 1090+ X011, ) 2 o)
p
a’n(p,X) = —[E -1, (xp)i +é,i-1, (Kp)} ; €, €,, €, are orts in a cylindrical coordinate system,;
— from solutions for the cylinder with number p to solutions for the cylinder with number ¢

Senlp,0,20)= S (o, )€ k=1, 2,3

n=—0

blm;q( ):(—I)HE - (7\1 )'ei(m_n)apq‘b:l,n(pq’)‘) b3m;q( )=(_l)nEm—n()‘gpq)'ei(m_n)am'b:3,n(pq’7\‘);
A

—

by (p,)=(- 1){ L, )bzn(pq,%) PR [Nm R (Y20 E S (VR )] bln(pq,%)}-e[(”"”)“”", (9)

2,pq

where 0, is the angle between the x, axis and the segment 7, ; K (X)) = (sign(x))m K, (]x|)
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Satisfying the boundary conditions, a system of integro-algebraic equations was formed to find the un-
known functions (5) and (6). Given the cumbersomeness of the specified system [29], it is omitted in this paper.
The first six equations were derived by applying the boundary conditions to the flat surfaces of the lay-
er (1). For this, the stress operator was applied to the functions (5), and the double Fourier integral was applied

to equation (1), after which the obtained expressions were equated. Basic solutions S +.m » given in a cylindrical

coordinate system, were transformed into a Cartesian system i, using the transition formulas (7).

Six additional equations arise when applying boundary conditions to the inner surfaces of the pipes (2).
For this, the stress operator is applied to the functions (6), and the resulting expressions are equated to the func-
tions (2), to which the Fourier integral along the z axis and the Fourier series along the angle ¢ are previously
applied.

Three boundary condition equations are written for each cavity surface: the stress operator is applied to
the functions (5), and the integral and Fourier series are applied to (3), after which they are equated to each other.

Basic solutions #, from the Cartesian coordinate system, using the transition formulas (8), rewritten as I?k,m

into the cylindrical one.
An additional 12 equations arise from the interface conditions between the layer and each of the two

pipes. To apply these conditions, the basic solutions i, , given in a Cartesian coordinate system, are trans-
formed into solutions Ek’m of the local cylindrical systems using the transition functions (8). The transition
formulas (9) are also used for basic solutions between different local cylindrical coordinate systems.

Using the first six equations, we have expressed H, (%,p) and &, (%,u) through B()(%) and substi-

tuted them into other equations. After simplifying the expressions, getting rid of the series and integrals
(which are now the same on the right and left sides of each equation), we obtained an infinite system of
(12+n-3) linear algebraic equations of the second kind, which was solved by the reduction method. As a re-

sult, the unknowns B{”)(1), 4" (1), 41 (), 4%} (1), 42} (1) were found. Next, substituting the obtained
values B{”) (1) in expressions for H,(%,u) and H,(k,u), we have identified all the unknown problems.

Numerical studies of the stressed state
The problem is numerically solved for a layer with two N_f(xl13,z)

cylindrical pipes and one cylindrical cavity at a given balanced 2
load (Fig. 2).
Geometric parameters: pipes and cylindrical cavity are I —
located on the same horizontal axis (012=0, 013=0), distance be- | / f \ . / L
tween pipes is £12=100 mm, distance to cylindrical cavity is |~ \/ \/ ’
L13=50 mm, outer radius of pipes and cylindrical cavity is T
Ri=R,=R;=15 mm, internal radius is »=r,=10 mm, distances to
the upper and lower boundaries of the layer are /= h =25 mm. \/ off - f(;’z) +w \/
Physical characteristics of the layer: aluminum plate
D16T, Poisson's ratio  v¢=0.3, elasticity modulus
Eo=7.1x10* MPa. The physical characteristics of the pipes were

l?_frp:1 p=3

<

\
|

Fig. 2. Calculation model of the structure
with bushings

calculated in two options: steel ShKhl5 (Poisson's ratio v;=v,=0.28, elasticity modulus
E\=E>=2.16x10° MPa) and polyamide (vi=v,=0.4, elasticity modulus E;=E>=1.65x10°> MPa). The stresses,
for comparison, were also obtained for a layer with three cylindrical cavities (without bushings) [28].

The stresses are given:

— at the upper boundary of the layer

8
F-10 ,T;};)Z’C;}QZO,FZI,
(22 +10%)7 -((x—£,,)? +102f
— at the bottom edge of the layer

() —
Gy (X,Z) -
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8 8 ~ ~
F-10 . F-10 2 _ 2 .
2(z2+10%)2 (x> +10° f  2(z2 +10%)? +((x—¢1,)> +10° ]
Zero stresses are given:

o} (x,2) =

— on the inner surfaces of the pipes Ggp)((pp,z) = tg‘;) €, = tE,f) =0,p=1,2;

— on the surface of the cavity GS) = rgg = rg) =0.

The infinite system was truncated by the parameter m=6 (the number of terms in the Fourier series
and the order of the system of equations).

The accuracy of fulfilling the boundary conditions for the specified m and the specified geometric
parameters is not less than 10 for values from 0 to 1.

The stresses 6, on the inner and outer surfaces of the pipe p=1 at z=0 are shown in Fig. 3. The stress-
es G, on the pipe surface p=2 are mirrored.

The stresses o, in the middle of the bushings depend significantly on the material of these bushings
(Fig. 3). If the bushings are made of polyamide, the stresses o, in them are almost zero.

When making bushings from steel, the stresses o, are not equal to zero, and the maximum values occur
on the inner surface of this bushing (Fig. 3, line 1).

The inner and outer surfaces of the bushings have different sign values of stresses o, (Fig. 3, lines 1, 2).
This means that the bushing (along the thickness of the flange) works in bending.

The stresses G, in the middle of the layer on the surfaces of cylindrical holes at z=0 are shown in Fig. 4.

The stresses o, in the middle of the layer on the surface of the cylindrical cavity p=3 (Fig. 4, linel)
do not depend on the material of the bushings: 6,5=g,Polyamide)=c; (cavity)

The stresses o, on the surface of the hole p=1 depend on the material of the bushing. If the bushing
is made of polyamide, then the stresses o, on the surface of the hole p=1 are equal to the stresses 6, without
the bushings (Fig. 4, line 3). If the bushing is made of steel, then the stresses 6, on the surface of the hole
p=1 (Fig. 4, line 2) are almost two times less than the stresses 6, with the polyamide bushing.

0.75 0.75
s 0.5 0.5 M
[l 3 1 L~ < / \ 2 -
= 0.25 AN & 025 ' 71
VAN A YALVIRVEEE- e == sl ”
A ~ / o F e W ettt nEP g %) AN ,1
e} . N s 1( & S _ / .\ - >/ N >
w -0.25 P=f \ 7 © -0.25 7
5 .05 SO LAL 2 0.5 [\ PN
% 0 7.5 2 NN/ = 0 7'5 N\ / 3T
-VU. 1 J m - . 1 N 1 N
0 m4 m2 3n/4 n Sn/4 6m/4 Tn/4 2n 0 n/4 n/2 3n/4 n Sm/4 6n/4 Tn/42n
Rotation angle, rad Rotation angle, rad
Fig. 3. Stresses 6y on the surfaces of pipes: Fig. 4. Stresses opin the middle of the layer on the
1 — pipe (steel), p=r1 ; 2 — pipe (steel), p=Ri; surfaces of the holes:
3 — pipe (polyamide), p=R: 1 — cavity p=3; 2 — hole p=1, steel,

3 —hole p=1, polyamide

The stresses o: in the middle of the layer on the surfaces of cylindrical holes at z=0 are shown in Fig. 5.

The stresses o in the middle of the layer on the surface of the cylindrical cavity p=3 (Fig. 5, line 1)
do not depend on the material of the bushings: c,¢)=g,Polyamide)=g (cavity)

If the bushing is made of polyamide, then the stresses o. on the surface of the hole p=1 (Fig. 5,
line 3) differ little from the stresses o. without the bushing (Fig. 5, line 4) and more than double the stresses
o: if the bushing is made of steel (Fig. 5, line 2).

The stresses oy on the upper and lower surfaces of the layer along the x axis at z=0 are shown in Fig. 6.

The stresses o, along the x axis at the upper boundary of the layer are almost independent of the ma-
terial of the bushing or its absence (Fig. 6, line 1). The maximum values on this surface occur above the cy-
lindrical cavity (p=3) and exceed the specified normal stresses G,.
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At the lower boundary of the layer, the stresses oy along the x axis, depending on the material of the
bushings, change in the region of these inhomogeneities (Fig. 6, lines 2, 3).

The stresses o, along the x axis at the lower boundary of the layer, in the absence of bushings, are
equal to the stresses o, when the material of the bushings is polyamide (Fig. 6, line 3).

0.8 l 0.5
------------------------------- X‘
0.4 /" \\\\\ 0.5 B o
VARG e S AN AN
° 02 ] l s g-1.0
g 0 s N C—==E" S Y s
A | r=* 1
-0.2 -2.0
0 w4 w2 3n/4 wm Sm/46n/4Tn/4 2n 0 20 40 60 80 100
Rotation angle, rad Distance, mm
Fig. 5. Stresses o in the middle of the layer on the Fig. 6. Stresses ox on flat surfaces of the layer:
surfaces of the holes: 1 — on the upper boundary (y=h);
1 —cavity p=3; 2 —hole p=1, steel; 2 — on the lower boundary (y= -/ ), steel bushing;
3~ hole p=1, polyamide; 4 —hole p=1, cavity 3 — on the lower boundary (y= - 4 ), polyamide bushing
Conclusions

1. An analytical-numerical approach to solving the first basic spatial problem of the theory of elastic-
ity for a layer smoothly contacting two longitudinal cylindrical tubes and weakened by # cylindrical cavities
is proposed.

2. The problem is reduced to an infinite system of linear algebraic equations of the second kind,
which made it possible to apply the reduction method. The use of the analytical-numerical generalized Fou-
rier method ensured obtaining a solution with the required accuracy.

3. The stress state of a layer with one cylindrical cavity and two thick-walled tubes under balanced
loading is numerically determined.

4. A comparative analysis of the stress state of the layer for an option with cavities instead of thick-
walled tubes [28] is carried out.

5. The numerical analysis of the stress state of the layer and thick-walled pipes under balanced load-
ing showed that the use of:

— polyamide bushings, compared to their absence, has almost no effect on the stress-strain state of
the structure;

— steel bushings reduces the stress in the middle of the layer in the areas of their location, redistrib-
uting the stress to the bushings themselves.

The proposed solution method makes it possible to obtain the stress-strain state of structures contain-
ing cylindrical cavities and bushings.

The numerical analysis allows to assess the influence of the material on the magnitude of the stress
distribution in the structures of machines and mechanisms at the design stage.

In the further development of the specified research topic, it is necessary to consider models with other
boundary conditions. One of such options is to take into account the rigid connection between the layer and pipes.
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Iepuma ocHOBHA 3a1a4a Teopii MPYKHOCTI AJ1s MIAPy 3 HMJIIHAPUYHUMH MOPOKHUHAMH | TJ1a1K0
KOHTAKTYIOYOro 3 JIBOMA UJIiHAPUIHUMH BTYJIKAMHA

0. O. Inpin

HamionansHui aepOKOCMIYHIH YHIBEpCUTET «XapKIBCHKHH aBialliiHUN THCTUTYT,
61070, Ykpaina, M. XapkiB, Bys1. Baquma Manbka, 17

Po3ss’azana npocmoposa 3adaua meopii npyscHocmi Ona wapy 3 n RO3008HCHIMU YUTTHOPUYHUMU NOPONCHUHAMU,
081 3 SIKUX MICMAMb MOBCMOCMINHI mpyduU, 21adko Kowmaxmyioui 3 wapom. Ha noeepxusx wapy, HympiuiHix no8epxHsx
mpyo i NOPOINCHUHAX 3A0AHT HANPYIICEHHA. Y Ci KaHOHIYHI NOGepXHi Midic 00010 He nepemunarombcs. Mamepian wapy t yu-
JEHOPUYHUX MPYO 0OHOPIOHUI MaA [30MPONHULL. 3anponoHO8aAHO AHATIMUKO-YUCTO8Y MEMOOUK) PO3PAXYHKY, KA nepedbadac
BUKOHAHHSL YMO8 CIAmuKu (051 nepuioi OCHOGHOI 3adaui meopii npysjcnocmi) ma bazyemvcsi Ha pigHsanHi Jlame. basuchi
po3s’sasku pignanus Jlame bepymocsi y (hopmi, o 0a€ MONCTUGICIb Y KOJMCHIU OKpeMill cucmemi KOOpOUHam ompumamu
MOYHULL PO38 30K 01 nesHol epanuynoi nosepxui. basucui po3s’ssku 6 yux cucmemax koopouram (018 wapy — 0ekapmosd,
051 YUNIHOPUYHUX HEOOHOPIOHOCMEN — OKAIbHI YUNIHOPUYHL) MO8 SI3AHI MIIC COO0H MAMEMAMUYHUM anapamom y3a2d/io-
Henozo memody Dyp’e. Bukonamms spanutnux YMO8 HA 6EPXHIL MA HUICHIT NOBEPXHAX WAPY, HA GHYMPIUWHIX NOBEPXHIX
mpyo, Ha YUTTHOPUYHUX NOPONCHUHAX, A MAKOIC BPAXYEBAHHS YMOB CAPSIICEHHS CIBOPIOIOMb HECKIHYEHY CUCeMY IHmegpo-
aneedpaiuHux PisHsAHb, AKA 36€0eHA 00 HECKIHYeHOT THIHOL. ¥ yucenbHomy 0ocaioxHceHHi 00 OMPUMAHOL HeCKIHYEHOT NiHILl-
HOI aneebpaiunol cucmemu piHAHb 3ACMOCOBYEMbCL Memoo pedykyii. Po3e sizanus cucmemu pienans dae 3HavenHs Hegioo-
Mmux Qyuryiv. QucenvHi po3paxynku noKa3aau WeUuoKy 30iHCHICIb HAOIUNCEHUX Po36 '13Kie 00 mounoeo. IIposedenuii uuce-
JIbHULL GHATE3 HANPYIHCEHO20 CINAHY Wapy | MOBCMOCMIHHUX MPYb NOKA3a8, Wo 3aCMOCY8AHHSA NOTIAMIOHUX 8MYIOK, 8 NOPi6-
HAHHI 3 IX 8I0cymHuicmio, Matldice He BNIUBAE HA HANPYHCEHO-0eh)OPMOBAHULI CIAH KOHCMPYKYII, 3ACMOCY8AHHA CINATbHUX
BMYIIOK 3MEHULYE HANPYHCEHHS 8 CePeOUHi wiapy 6 00aacCmAX iX po3mauly8aHHs, Nepepo3noOIAIOYU HANPYHCEHHA HA CAMI
8MYIKU. 3anponoHOBAHUI MeMOO PO36 A3aAHHS OGE MOJICTUBICIb OMPUMYBATNU HANPYIHCEHO-0eDOPMOBAHUL CIAH KOHCIP)-
KYitl, Wo Micmsame YuiiHOPUYHI NOPONCHUHU | GMYJIKU, a NPOBEOCHUI YUCETbHUL AHAI3 00380JI€ OYIHUMU GNIIUE MATNEPIATLY
HA 8eTUYUHU POZNOOLIEHHSL HANPYXCEHb Y KOHCIMPYKYIAX MAWIUH | MEXAHIZMI6 Ha emani npoeKmy6anHsL.
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Knrwuosi cnosa: sonoxnucmuii komnosum, y3azanvhenuil memoo @yp’e, piensnna Jlame, wap 3 yuriHOpuyHUMU
BKIIIOYEHHAMU.
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