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В авіакосмічній галузі й машинобудуванні поширеним є застосування циліндрич-
них врізаних опор для деталей. Для розрахунку подібних з’єднань використову-
ють спрощення або наближення. У статті запропоновано методику розрахун-
ку шару на двох поздовжньо врізаних циліндричних опорах. Між опорами й ша-
ром розташовані втулки (товстостінні труби), шар послаблений поздовжньою 
циліндричною порожниною. На нижній і верхній поверхнях шару задані напру-
ження, а на внутрішніх поверхнях труб – умови гладкого контакту, на поверхні 
порожнини – напруження. Для розв’язання задачі використано рівняння Ламе, 
де для шару застосовано декартову систему координат, а для труб і циліндри-
чної порожнини – локальні циліндричні системи. Поєднання базисних розв’язків 
у різних системах координат здійснюється за допомогою узагальненого методу 
Фур’є. Виходячи з граничних умов й умов спряження, отримано нескінченну си-
стему інтегро-алгебраїчних рівнянь, яка зводиться до лінійних алгебраїчних 
рівнянь другого роду й розв’язується за допомогою методу редукції. Напруже-
но-деформований стан у кожній точці пружних з'єднаних тіл визначено також 
із рівняння Ламе з використанням узагальненого методу Фур’є до базисних 
розв’язків. Показано, що точність результатів у цьому випадку залежить від 
наближення граничних поверхонь одна до одної та від порядку системи рівнянь. 
Чисельні дослідження проведено для шару з опорами й порожниною, розташо-
ваними на одній прямій, при дії консольного навантаження. Аналіз напруженого 
стану отримано в зонах циліндричних отворів шару й в тілі втулок. Максима-
льні напруження перевищують задані і виникають у місці розташування цилін-
дричної порожнини. Запропонований метод розв’язання дає можливість отри-
мувати результати напружено-деформованого стану консольних елементів 
конструкцій літаків, оцінювати вплив матеріалу й геометричних параметрів на 
величини розподілення напружень в інших конструкціях машин і механізмів, які 
можуть бути представлені у вигляді моделей, подібних розглянутій. 

Ключові слова: узагальнений метод Фур’є, рівняння Ламе, шар з циліндричними 
включеннями, нескінченна система інтегро-алгебраїчних рівнянь, циліндрична 
порожнина. 

Вступ 
У машино- та авіабудуванні поєднання різних елементів конструкцій часто відбувається шар-

нірно. Ці елементи з’єднуються болтами, заклепками, підшипниками та іншими кріпленнями, під які 
в конструкціях передбачаються відповідні отвори. Таким чином створюються елементи, опори яких 
являють собою врізані циліндри. Для посилення місця контакту з опорою в деталях часто встанов-
люються втулки, жорстко поєднані з деталлю й які гладко контактують з опорою. 

Для розрахунку таких вузлів, що являють собою шар із товстостінними трубами, застосову-
ються переважно наближені методи, як-от метод скінчених елементів [1], і програмні засоби на його 
основі [2]. Проте за такого підходу для підтвердження отриманих результатів варто скористатися 
аналітичним або аналітико-числовими методами, або проводити випробування [3, 4]. 

Застосування аналітичних методів [5, 6], заснованих на розкладі розв’язків у ряд Фур’є, мож-
ливе лише при значному спрощенні розрахункової моделі. Вказані методи розглядають задачу або в 
плоскому вигляді, або з кількістю граничних умов менше трьох. 

Аналітико-числові методи, в порівнянні з аналітичними, дають більше можливостей для оцін-
ки напруженого стану шару з циліндричними неоднорідностями. Так, у роботах [7, 8] розглядається 
шар із циліндричною порожниною, розташованою перпендикулярно до меж шару. Розв’язок заснова-
ний на інтегральних перетвореннях Лапласа і скінченних синус- і косинус-рядів Фур’є, що послідов-
но застосовуються до осесиметричних рівнянь руху і граничних умов. Однак у разі використання за-
пропонованого методу [7, 8] можна враховувати не більше однієї циліндричної порожнини. 
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У роботі [9] завдяки інтегральним перетворенням Вебера-Орра досліджується задача кручен-
ня пружного півпростору, що має вертикальну циліндричну порожнину, при цьому на плоскій грани-
ці закріплено коаксіальний штамп, що обертається під дією крутного моменту. Метод, запропонова-
ний в цьому дослідженні, може бути використаний тільки для півпростору. 

Для досягнення оптимального розподілу теплових напружень у композитних пластинах із не-
круглими отворами, що знаходяться під рівномірним тепловим потоком, у роботі [10] застосовуються 
метаевристичні алгоритми оптимізації. Аналітична частина дослідження базується на термопружній 
теорії та методі комплексної змінної. Проте запропонований метод [10] не може враховувати більше 
ніж одну циліндричну порожнину. 

Для розрахунку шару з декількома циліндричними неоднорідностями, розташованими пара-
лельно межам шару, стане у нагоді підхід, заснований на аналітико-числовому узагальненому методі 
Фур’є [11], що дозволяє поєднати базисні розв’язки рівняння Ламе в різних системах координат. Так, 
за допомогою узагальненого методу Фур’є розв’язано задачі для циліндра з циліндричними порож-
нинами [12, 13] і включеннями [14]. У роботі [15] на прикладі задачі для півпростору з циліндричною 
порожниною наведено обґрунтування формул переходу базисних розв’язків між декартовою й цилін-
дричною системами координат. 

На основі узагальненого методу Фур’є в роботі [16] розв’язана задача для шару з однією по-
здовжньою циліндричною порожниною, а [17] – задача для шару з суцільним циліндричним вклю-
ченням. Задача для шару, поєднаного з півпростором, в якому розташована циліндрична порожнина 
розв’язана в роботі [18]. Шар з двома циліндричними порожнинами (змодельовані  врізані циліндри-
чні опори) розглядається в роботі [19]. Задача для шару з однією товстостінною трубою розв’язана в 
роботі [20], для шару з однією товстостінною трубою та циліндричною порожниною – у [21], з двома 
товстостінними трубами (змодельовані циліндричні врізані опори з втулками) – у роботі [22]. Проте 
підходи, запропоновані в роботах [16–22], не можуть бути застосовані при розв’язку задачі для шару 
на двох циліндричних врізаних опорах із втулками, послабленого циліндричною порожниною. 

Метою даної роботи є: 
– розробити методику розв’язання змішаної задачі теорії пружності для шару з двома поздов-

жніми циліндричними трубами й циліндричною порожниною. Задля її досягнення на верхній та ниж-
ній межах шару задані напруження, на внутрішніх поверхнях труб – умови гладкого контакту, а на 
порожнині – напруження; 

– провести аналіз напруженого стану шару й товстостінних труб при заданому консольному 
навантаженні. 

Постановка задачі 
Модель являє собою шар із двома циліндричними 

товстостінними трубами й циліндричною порожниною, роз-
ташованими паралельно його межам (рис. 1). 

Для опису геометрії труб і порожнини використову-
ються локальні циліндричні координати (ρp, φp, z, де p – но-
мер труби або порожнини), а для шару – декартова система 
координат (x, y, z), яка співпадає з системою координат пер-
шої труби (p=1). 

Зовнішні радіуси труб або порожнини позначено Rp, а 

внутрішні радіуси труб rp. Відстань до меж шару y=h та y= – h
~

. 

 

Рис. 1. Шар із двома циліндричними 
товстостінними трубами й  
циліндричною порожниною 
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– на внутрішніх поверхнях труб задані умови гладкого контакту 
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– на поверхні циліндричної порожнини (p = 3) задані напруження 
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Шар жорстко поєднаний з кожною трубою умовами спряження 
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Усі задані функції вважатимемо швидко спадаючими від початку координат по осі z і осі x. 

Методика розв’язання 
Розв’язання задачі представлено у вигляді, запропонованому в роботі [22], з урахуванням до-

даткової порожнини 
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де  – коефіцієнт Пуассона; Im(x), Km(x) – модифіковані функції Бесселя. 
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Для запису рівнянь (6) і (7) в одній системі координат застосовані формули переходу між ба-
зисними розв’язками рівняння Ламе [11]: 

– від зовнішніх розв’язків для циліндра mkS ,
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 – орти в циліндричній системі координат; 
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де αpq – кут між віссю xp та відрізком qp ;    xKxsignxK m
m

m  )()(
~

. 

Для знаходження 27 невідомих функцій (6) і (7) сформована система з 27 інтегро-
алгебраїчних рівнянь. 

Перші шість рівнянь утворюються при виконанні граничних умов на плоских поверхнях шару (1). 
Для цього до функцій (6) застосовано оператор напружень, а до (1) – подвійний інтеграл Фур’є, після цьо-
го вини прирівняні один до одного. Базисні розв’язки mkS ,


 із циліндричної системи координат за допомо-

гою формул переходу (8) переписані через 
ku


 в декартову. 
Ще шість рівнянь утворюються при виконанні граничних умов на внутрішніх поверхнях труб (2). 

Для цього до функцій (7) застосовано оператор напружень, а виокремлені вирази по e


 й ze


 в напружен-

нях по e


 залишаються в переміщеннях. Ці вирази прирівняні до функцій (2), до яких застосовано інтег-

рал Фур’є по осі z і ряд Фур’є по куту . 
Три рівняння записані для граничних умов на поверхні порожнини. Для цього до функцій (6) 

застосовано оператор напружень, а до (3) – інтеграл Фур’є по осі z і ряд Фур’є по куту . Після цього 
вони прирівняні один до одного. Базисні розв’язки 

ku


 з декартової системи координат за допомогою 

формул переходу (9) переписані через mkR ,


 в циліндричну. 
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Ще 12 рівнянь утворюються при виконанні умов спряження між шаром і кожною трубою (4), (5). 

При виконанні цих умов базисні розв’язки 
ku


 переписані з декартової системи координат через mkR ,


 в 

локальні циліндричні за допомогою функцій переходу (9). Крім того, задіяні формули переходу базисних 
розв’язків від однієї локальної циліндричної системи координат до іншої (10). 

Із перших шести рівнянь були виведені  ,kH  та  ,
~

kH  через    p
mkB ,  і підставлені в інші 

рівняння. Звільнившись у лівій та правій частинах від рядів й інтегралів, отримали нескінчену систе-
му з 21 лінійного алгебраїчного рівняння другого роду, до якої може бути застосований метод редук-
ції. У результаті розв’язання знайдені невідомі    1

,mkB ,    2
,mkB ,    3

,mkB ,    1
,mkA ,    1

,

~
mkA ,    2

,mkA , 
   2
,

~
mkA . Отримані значення функцій    1

,mkB  та    2
,mkB  підставлені у вираз для  ,kH  та  ,

~
kH . 

Завдяки цьому знайдені всі невідомі рівнянь (6) і (7). 

Чисельні дослідження напруженого стану 
Чисельно задача розв’язана для 

шару з двома циліндричними трубами й 
циліндричною порожниною при задано-
му консольному навантаженні (рис. 2). 

Геометричні параметри моделі: 
труби й циліндрична порожнина розташо-
вані на одній горизонтальній осі (α12=0, 
α13=), відстань між трубами L12=40 мм, 

 
Рис. 2. Консольне навантаження шару на двох врізаних 

циліндричних опорах із циліндричною порожниною 

відстань до циліндричної порожнини L13=40 мм, зовнішній радіус труб R1=R2=R3=15 мм, внутрішній 

r1=r2=10 мм, відстані до верхньої та нижньої меж шару h= h
~

=20 мм. 
Фізичні характеристики шару: алюмінієвий сплав Д16Т, коефіцієнт Пуассона 0=0,3, модуль 

пружності E0=7,1×104 МПа. Фізичні характеристики труб: сталь ШХ15, коефіцієнт Пуассона 
1=2=0,28, модуль пружності E1=E2=2,16×105 МПа. 

На верхній межі шару задані напруження у вигляді одиничної хвилі 
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y zx . На внутрішніх поверхнях труб задані 

нульові нормальні переміщення й дотичні напруження 0),(),(),( )(
2

)(
1

)(
0  zzzU p

p
p

p
p

p , 

p=1…2. На поверхні порожнини задані нульові напруження 0)3()3()3(   z . 

Точність виконання гра-
ничних умов залежить від кіль-
кості членів ряду Фур’є і порядку 
системи рівнянь – m. При зада-
них геометричних параметрах 
збіжність граничних умов пред-
ставлена в табл. 1. 

Таблиця 1. Збіжність граничних умов 

Напруження m=2 m=3 m=4 m=5 m=6 

),()( zxh
y  –0,98979 –0,996239 –0,999133 –0,99982 –0,999954 

),()
~

( zxh
y  –0,0026 –0,00025 –0,000013 -2×10-6 -1×10-6 

 

Аналіз напруженого стану проведений при m=6. 
На рис. 3 представлено напруження  на внутрішніх і зовнішніх поверхнях труб при z=0. 
Напруження  є максимальними на внутрішніх поверхнях труб (рис. 3, лінії 3, 4) і виникають 

під впливом навантаження й нульових нормальних переміщень на опорах. Напруження  на внутрі-
шній поверхні труби p=2 (рис. 3, лінія 4) протилежне за знаком і дещо більше за напруження  на 
трубі p=1 (рис. 3, лінія 3). Ці напруження також мають різний знак залежно від частини труби, де во-
ни розглядаються (верхня або нижня). Напруження  на внутрішніх поверхнях труб також більші на 
трубі p=2 (рис. 3, лінія 2). 



ДИНАМІКА ТА МІЦНІСТЬ МАШИН  

ISSN 2709-2984. Проблеми машинобудування. 2025. Т. 28. № 4 

Зовнішні поверхні труб жорстко поєднані з шаром, тому напруження  на поверхні спряжен-
ня в тілі шару дорівнює напруженню  в тілі труби, тобто на поверхнях порожнин p=1 і p=2 в тілі 
шару виникають напруження, вказані на рис. 3 (лінії 1, 2). 

На рис. 4 представлено напруження  на зовнішніх і внутрішніх поверхнях труб при z=0. 
Напруження  в тілі труби p=1 (рис. 4, лінії 1, 2) є максимальними на зовнішній поверхні 

труби, значно перевищують напруження  в тілі труби p=2 і задані одиничні напруження y. 
Напруження  в тілі труби p=2 (рис. 4, лінії 3, 4) на зовнішній і внутрішній поверхнях труби 

майже не відрізняються і значно менші за напруження в тілі труби p=1. 

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Н
ап

ру
ж

ен
ня

 ρ
, М

П
а

Кут повороту, рад

1

2

0    /4 /2 3/4  5/4 6/4 7/4 2
3

4

 

Рис. 3. Напруження  на поверхнях труб:  
1 – труба p=1, =R1; 2 –  труба p=1, =r1;  
3 – труба p=2, =R2; 4 – труба p=2, =r2 
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Рис. 4. Напруження  на поверхнях труб: 
1 – труба p=1, =R1; 2 – труба p=1, =r1;  
3 – труба p=2, =R2; 4 – труба p=2, =r2 

На рис. 5 показано напруження  на поверхнях циліндричних отворів у тілі шару, у тому чи-
слі в місці контакту з трубами, при z=0. 

Максимальні значення напруження = 1,7 МПа спостерігаються на поверхні циліндричної 
порожнини p=3, в її верхній частині (рис. 5, лінія 3). Це значно перевищує задані одиничні напружен-
ня y. Максимальні значення напружень  на поверхні спряження p=1 в тілі шару (лінія 1) 
= 0,4104 МПа, на поверхні спряження p=2 в тілі шару дорівнює нулю. Суттєве зниження напру-
жень на порожнинах p=1 і p=2 забезпечується, зокрема, і за рахунок стальних втулок. 

Дотичні напруження  на поверхнях циліндричних отворів шару в місці контакту з трубами 
(у тілі шару), при z=0 подано на рис. 6. 

За умов жорсткого поєднання труб із шаром дотичні напруження  на поверхні спряження в 
тілі труби дорівнюють напруженням  в тілі шару (рис. 6). Дотичні напруження  в місці спря-
ження шару з трубою p=2 зосереджені в лівій частині з’єднання (рис. 6, лінія 2).  

Дотичні напруження  в місці спряження шару з трубою p=1 (рис. 6, лінія 1) більші за на-
пруження  в місці спряження шару з трубою p=2. 
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Рис. 5. Напруження  на поверхнях циліндричних 
отворів шару: 

1 – у місці контакту з трубою (p=1);  
2 – у місці контакту з трубою (p=2);  

3 – на поверхні порожнини (p=3) 
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Рис. 6. Дотичні напруження  в місцях 
спряження шару з трубами: 
1 – опора p=1; 2 – опора p=2 
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На рис. 7 відображено напруження x на 
верхній та нижній поверхнях шару вздовж осі x 
при z=0. 

Напруження x вздовж осі x на верхній 
межі шару є максимальними x=1,9648 МПа на 
відстані x= –30 мм, тобто над порожниною (p=3), і 
значно перевищують задані одиничні напруження 
y. На відстані x= –160 мм (у місці заданого одини-
чного напруження y) напруження x на верхній 
межі також мають екстремум x= –0,9596 МПа. 
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Рис. 7. Напруження x на плоских поверхнях шару: 

1 – на верхній межі (y=h); 2 – на нижній межі (y= – h
~

) 

Висновки 
Запропоновано аналітико-числовий підхід до розв’язання змішаної задачі теорії пружності 

для шару з двома поздовжніми циліндричними трубами й циліндричною порожниною для випадку, 
коли на верхній та нижній межах шару задані напруження, на внутрішніх поверхнях труб – умови 
гладкого контакту, на порожнині – напруження. 

Вперше в аналітичному вигляді записано розв’язок для шару з двома циліндричними трубами 
й циліндричною порожниною. 

Задачу зведено до нескінченної системи лінійних алгебраїчних рівнянь, що допускає застосу-
вання до неї методу редукції. Застосування аналітико-числового узагальненого методу Фур’є дозво-
лило отримати розв’язок задачі із заданою точністю. 

Проведений чисельний аналіз напруженого стану шару й товстостінних труб при заданому 
консольному навантаженні показав, що: 

– напруження  і x у спряженні p=1 на поверхні порожнини p=3 й на плоских поверхнях 
шару значно перевищують задані одиничні y; 

– при порівняні напружень у місцях циліндричних опор напруження  і  за абсолютними 
значеннями більше на поверхнях труби p=1, а напруження  більше на поверхнях труби p=2. 

Запропонований метод розв’язання дає змогу отримувати результати напружено-
деформованого стану консольних елементів конструкцій літаків, оцінювати вплив матеріалу й геоме-
тричних параметрів на величини розподілення напружень в інших конструкціях машин і механізмів, 
які можуть бути представлені у вигляді моделей, подібних розглянутій.  

У подальшому для розвитку означеної теми досліджень необхідно розглянути моделі з іншими 
граничними умовами. Одним із таких варіантів є врахування гладких контактів між шаром і трубами. 
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