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Розв’язано задачу теорії згину тонких плит для нескінченної анізот-
ропної плити з еліптичним або лінійним пружним включенням, встав-
леним в отвір без попереднього натягу й з умовами ідеального механі-
чного контакту з плитою-матрицею. Для отримання розв’язку вико-
ристано апарат узагальнених комплексних потенціалів, розклади фу-
нкцій у ряди Лорана й за многочленами Фабера, а також метод кон-
формних відображень для переходу від зовнішності одиничного кола 
до зовнішності еліпса. У роботі наведено точне аналітичне 
розв’язання задачі для випадку еліптичного включення й отримано 
вирази для згинальних моментів і поперечних сил як у плиті-матриці, 
так і у включенні. Для випадку, коли еліптичне включення вироджу-
ється у лінійне, виведено формули для обчислення коефіцієнтів інтен-
сивності моментів (КІМ) у його кінцях. Запропонований підхід дозво-
ляє коректно описати сингулярну поведінку згинальних моментів й 
оцінити умови, за яких КІМ мають істотні значення. Проведено чис-
лові дослідження для плит з ізотропного (КАСТ–В) й анізотропного 
(склопластик косокутного намотування) матеріалів за різних значень 
відносної жорсткості включення і співвідношення його півосей. 
Встановлено, що зменшення жорсткості включення призводить до 
зростання згинальних моментів у певних зонах контакту з плитою, 
причому концентрація моментів в анізотропних плитах вища, ніж в 
ізотропних. Показано, що для лінійного включення великі значення 
КІМ спостерігаються лише у випадках суттєво жорстких або 
м’яких включень; при близьких жорсткостях плити і включення 
(менш ніж у декілька разів) КІМ майже зникають, а отже, вести 
мову про сингулярності моментів у таких випадках некоректно. Ізо-
тропні плити розглянуто як окремий випадок анізотропних, що до-
зволяє поширити отримані результати на великий клас технічних 
задач механіки композитів і конструкцій із вставними елементами. 

Ключові слова: тонка плита, згин, математичне моделювання, чис-
лові методи, отвори, включення, комплексні потенціали. 

Вступ 
Незважаючи на значні успіхи у розвитку прикладної теорії згину тонких анізотропних плит 

[1, 2, 3], на сьогодні задач для плит з інородними включеннями розв’язано небагато. Особливо це 
стосується випадків з лінійними включеннями, коли необхідно дослідити сингулярну поведінку 
основних характеристик у їхніх кінцях. Для багатозв’язних плит така постановка й досі є складною 
математичною проблемою, тоді як для плити з одним включенням вдається отримати точний розв’язок, 
розглядаючи лінійне включення як граничний випадок еліптичного, коли одна з півосей дорівнює нулю. 
У роботі виконано математичне моделювання процесу згину анізотропної плити з пружним 
включенням. Наведено розв’язок задачі згину анізотропної плити з еліптичним, зокрема й лінійним, 
пружним включенням, отриманий завдяки застосуванню методів конформних відображень, розклад 
функцій у ряди Лорана й за многочленами Фабера, а також формулу для обчислення коефіцієнтів 
інтенсивності моментів (КІМ). Представлено результати числових розрахунків, які дозволили виявити 
вплив жорсткості пружного включення, відношення півосей включення й анізотропії матеріалів плити 
й включення на значення згинальних моментів, що виникають у плиті. 

Постановка та метод розв’язання задачі 
Розглянемо нескінченну анізотропну плиту-матрицю з еліптичним отвором L1 з центром у 

початку системи координат Oxy й напівосями a1, b1, розташованими уздовж осей координат (рис. 1). 
В отвір вставлено пружне включення з іншого матеріалу. Плита і включення знаходяться в умовах  
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ідеального механічного контакту. На плиту-матрицю діють згинальні 

моменти постійної величини 
xM , 

yM , 
xyH  на нескінченності. 

Для розв’язання задачі використаємо комплексні потенціали 
Лехницького теорії згину анізотропних плит [1, 2]. Область, яку займає 
плита-матриця, позначимо S, а область пружного включення – S1. 

 

Рис. 1. Нескінченна плита 
з еліптичним включенням 

При використанні комплексних потенціалів розв’язання задачі зводиться до знаходження 

похідних функцій узагальнених комплексних змінних )( kk zW   для плити-матриці й )( 11
kk zW   для 

включення із відповідних граничних умов. 
Похідні комплексних потенціалів для плити-матриці )( kk zW   є функціями узагальнених 

комплексних змінних 

 yxz kk = , (1) 

де μk – корні характеристичного рівняння [4] 
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де aij – коефіцієнти деформації для матеріала плити; /32= 3
0 hD ; h – напівтовщина плити. 

Функції  kk zW '  визначені в областях Sk, які отримуються з області S афінними 
перетвореннями (1) і мають наступний вигляд [2] 
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де Γk – постійні, що знаходяться з системи рівнянь 
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де ak1n – невідомі; ζk1 – змінні, які визначаються з конформного відображення зовнішності одиничного 
кола 11 k  на зовнішності еліпсів Lk1: 
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Якщо функції )( kk zW   визначені, то згинальні моменти й поперечні сили у всіх точках плити 
обчислюються за наступними формулами: 
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Для згинальних моментів на довільній площадці з нормаллю n маємо 

nxnxHnyMnxMM xyyxn cossin2coscos= 22  . 

Похідні комплексних потенціалів для включення )( 11
kk zW   також є функціями узагальнених 

комплексних змінних 

 yxz kk
11 =  , (5) 

де 1
k  – корні характеристичного рівняння виду (2), в якому коефіцієнти Dij замінені на відповідні 

параметри жорсткості 1
jiD  для включення. Ці функції визначені в областях 1

kS , що отримуються з 

області S1 афінними перетвореннями (5). Вони в цих скінченних однозв’язних областях 
голоморфнимій можуть бути розвинені в ряди за поліномами Фабера, які після перетворень можна 
записати у вигляді степеневих рядів наступним чином: 
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Тут 1
nka  – невідомі; 1

kR  – постійні, які обчислюються за аналогією з формулами (4). 

Знайдемо невідомі akln та 1
nka  з граничних умов на контурі контакту включення з матрицею-

плитою [1, 2] 
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Таким чином, похідні комплексних потенціалів мають вид 
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а для моментів отримаємо наступні вирази  
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Якщо отвір переходить у прямолінійний розріз, а включення – у пружну лінію відповідно, то 
можна також обчислювати КІМ km1 (для моментів My) і km2 (для моментів Hxy). Аналогічно випадку 
плоскої задачі [5] для КІМ отримаємо вирази  
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На основі КІМ завдяки виразам [1]  

z
h

y
y 32

M3
= ;   z

h
xy

xy 32

H3
=  

можна знайти максимальні значення КІМ (при z=h)  
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Числові дослідження 
Проведено числові дослідження згинальних моментів для ізотропного матеріалу КАСТ-В 

(матеріал М1) й анізотропного склопластика косокутного намотування (матеріал М2). Їх коефіцієнти 
деформації наведено у табл. 1. Коефіцієнти деформації для материалу включення обиралися 

наступним чином: ij
ll

ij aa )()( =  , де )(l  – параметр відносної жорсткості. 

Таблиця 1. Постійні матеріалів 

Матеріал 
a11×10-4,  
МПа-1 

a22×10-4,  
МПа-1 

a12×10-4,  
МПа-1 

a66×10-4,  
МПа-1 

М1 72,100 72,100 -8,600 161,500 
М2 10000 2,800 -0,770 27,000   

Рис. 2. Нескінченна плита з круговим включенням 

Для плити з круговим включенням радіуса a1 (b1=a1) (рис. 2) під впливом згинальних моментів 

yy mM =  для різних значень параметра відносної жорсткості λ(1) з точністю до постійного множника my 

у табл. 2 наведено значення моментів Ms у точках контакту плити з включенням на площадках, 
перпендикулярних контуру включення. Тут θ – центральний кут отвору, який відраховується від 
додатного напямку осі Ox проти годинникової стрілки. Значення λ(1), які дорівнюють 0 та ∞, 
відповідають випадкам плити з абсолютно жорстким й абсолютно м’яким включенням (отвором). 

Аналізуючи дані табл. 2, можна побачити, що зі зменшенням жорсткості включення (тобто зі 
збільшенням λ(1)) значення моментів Ms у точках біля θ=0 зростають, у точках поблизу θ=π/2 вони 
спочатку спадають (при λ(1)>1), потім зростають (при λ(1)<1). При λ(1)<10-2 включення можна вважати 
абсолютно жорстким, при λ(1)>102 – абсолютно м’яким (отвором). Концентрація моментів в 
анізотропній плиті вища, ніж в ізотропній. 

У табл. 3 для різних відношень напівосей b1/a1 еліптичного включення й параметра відносної 
жорсткості λ(1) наведено значення моментів у точках плити поблизу включення, а також КІМ (при 
b1/a1=10-5). 

Із табл. 3 видно, що зі зменшенням відношення b1/a1 значення моментів Ms поблизу кінців 
більшої напівосі стрімко зростають по модулю; при b1/a1<10-3 включення можна вважати лінійним і 
обчислювати для нього КІМ. При цьому КІМ виникає, якщо відносна жорсткість матеріалу включення 
велика або мала. 
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Таблиця 2. Значення моментів Ms у точках контакту плити 

θ, рад 
Матеріал λ(1) 

0 π/12 π/6 π/4 π/3 5π/12 π/2 
0 –0,164 –0,128 –0,029 0,107 0,242 0,341 0,377 

10-2 –0,124 –0,092 –0,005 0,114 0,235 0,319 0,351 
10-1 0,159 0,161 0,166 0,172 0,178 0,183 0,184 
0,5 0,720 0,671 0,539 0,359 0,179 0,046 –0,002 
2 1,248 1,169 0,951 0,653 0,355 0,137 0,058 

10 1,590 1,497 1,245 0,899 0,554 0,301 0,209 
102 1,704 1,608 1,346 0,989 0,631 0,370 0,274 

М1 

∞ 1,718 1,622 1,359 1,000 0,641 0,378 0,283 
0 –0,222 –0,254 0,007 0,464 0,511 0,303 0,190 

10-2 –0,185 –0,215 0,034 0,463 0,496 0,288 0,176 
10-1 0,078 0,056 0,215 0,461 0,403 0,192 0,090 
0,5 0,653 0,616 0,568 0,476 0,275 0,074 –0,006 
2 1,369 1,257 0,925 0,534 0,256 0,098 0,046 

10 2,032 1,820 1,212 0,608 0,312 0,208 0,184 
102 2,311 2,053 1,328 0,641 0,344 0,266 0,253 

М2 

∞ 2,348 2,084 1,343 0,646 0,349 0,274 0,263 

Таблиця 3. Значення моментів і КІМ залежно від λ(1) та b1/a1 

b1/a1 
λ(1) 

1 0,5 10-1 10-2 10-3 10-4 

КІМ  


1mk  

M1 
0 –0,16 –0,19 –0,42 –3,02 –29,00 –288,69 –0,136 

10-2 –0,12 –0,16 –0,33 –0,97 –1,32 –1,38 –0,001 
0,5 0,72 0,63 0,53 0,50 0,49 0,49 0,000 
2 1,25 1,40 1,77 1,97 1,99 1,99 0,000 

102 1,70 2,40 7,62 42,10 86,81 97,28 0,013 
∞ 1,72 2,44 8,18 72,78 718,83 7178,87 1,000 

М2 
0 –0,22 –0,27 –0,69 –5,37 –52,18 –520,13 –0,170 

10-2 –0,19 –0,24 –0,53 –1,51 –1,99 –2,06 –0,001 
0,5 0,65 0,58 0,51 0,49 0,49 0,49 0,000 
2 1,37 1,55 1,86 1,97 1,99 1,99 0,000 

102 2,31 3,59 12,71 57,10 91,35 97,22 0,007 
∞ 2,35 3,70 14,48 135,77 1348,63 13475,67 1,000 

 

На рис. 3 зображено графіки КІМ ( 
1mk ) залежно від 

жорсткості включення (параметра λ(1)). Бачимо, що для 
лінінйного пружного включення вплив параметра λ(1) такий 
самий, як і для пружного кругового ядра: при λ(1)<10-3 
включення можна вважати абсолютно жорстким, а при λ(1)>103 
– абсолютно м’яким (тріщиной). При 10-4<λ(1)<104 значення 
КІМ досить малі та ними можна знехтувати. Тому КІМ для 
лінійних пружних включень можна розглядати тільки в тому 
випадку, якщо жорсткість включення відрізняється від 
жорсткості плити не менше ніж у 103 разів.  

Рис. 3. Залежність КІМ від відносної 
жорсткості лінійного включення 
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Висновки 
За допомогою комплексних потенціалів розв’язано задачу згину нескінченної анізотропної 

плити з еліптичним пружним включенням. Запропоновано підхід для обчислення коефіцієнтів 
інтенсивності моментів КІМ. 

Проведене математичне моделювання процесу згину дозволило оцінити вплив відносної 
жорсткості включення на величину згинальних моментів у точках контакту плити з включенням, а 
також зʼясувати, у яких випадках можна вважати включення абсолютно м’яким і абсолютно жорстким. 

Досліджено вплив відношення напівосей еліптичного включення на величину згинальних 
моментів і на КІМ. Встановлено, що включення можна вважати лінійним при b1/a1<10-3. Виявлено, 
що КІМ можна розглядати у випадках, коли матеріал включення відрізняється від матеріалу плити не 
менше ніж у 103 разів. 
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