CONVECTIVE HEAT TRANSFER OF A VISCOUS INCOMPRESSIBLE FLUID IN A CYLINDRICAL CELL WITH A CONICALLY DEEPENED BOTTOM AND SOLID BOUNDARY CONDITIONS

J. of Mech. Eng., 2017, vol. 20, no. 2, pp. 22-28

DOI:   https://doi.org/10.15407/pmach2017.02.022

Journal Journal of Mechanical Engineering 
Publisher A. Podgorny Institute for Mechanical Engineering Problems
National Academy of Science of Ukraine
ISSN 0131-2928 (Print), 2411-0779 (Online)
Issue Vol. 20, no. 2, 2017 (June)
Pages 22–28

 

Authors

O. L. Andreyeva, A. Podgorny Institute of Mechanical Engineering Problems of NASU (2/10, Pozharsky St., Kharkiv, 61046, Ukraine), National Science Center Kharkov Institute of Physics and Technology (1, Akademicheskaya St., Kharkov, 61108, Ukraine), e-mail: andreevaoksana@kipt.kharkov.ua

A. O. Kostikov, A. Podgorny Institute of Mechanical Engineering Problems of NASU (2/10, Pozharsky St., Kharkiv, 61046, Ukraine), V. N. Karazin Kharkiv National University (4, Svobody Sq., Kharkiv, 61022, Ukraine), e-mail: kostikov@ipmach.kharkov.ua, ORCID: 0000-0001-6076-1942

V. I. Tkachenko, National Science Center Kharkov Institute of Physics and Technology (1, Akademicheskaya St., Kharkov, 61108, Ukraine), V. N. Karazin Kharkiv National University (4, Svobody Sq., Kharkiv, 61022, Ukraine),
e-mail: tkachenko@kipt.kharkov.ua, ORCID: 0000-0002-1108-5842

 

Abstract

This paper considers the problem of thermal convection of a viscous incompressible fluid in a cylindrical elementary convective cell with a conically deep bottom and solid boundary conditions. The Stokes functions are constructed in a cylindrical convective cell, as well as on the conical deepening of the cell bottom. Based on the Fujiwara effect, we obtained model distributions of Stokes current lines in a cylindrical elementary convective cell having a conically deepened bottom and solid edges.

 

Keywords: cylindrical elementary cell, heat convection, conical cavity, solid boundary conditions, viscous incompressible liquid, Fujiwhara effect

 

References

  1. Strutt, J. W. (Lord Rayleigh). (1916). On convection currents in a horizontal layer of fluid when the higher temperature is on the under side.  Phil. Mag., vol. 32, pp. 529–546. https://doi.org/10.1080/14786441608635602
  2. Gershuny, G. Z. & Zhuhovickiy, E. M. (1972). Convective stability of incompressible fluid. Moscow: Nauka, 393 p.
  3. Getling, A. V. (1991). Spatial patterns formed by Rayleigh-Benard convection. Uspekhi phizicheskih nauk, vol. 161, no. 9, pp. 1–80. (in Russian). https://doi.org/10.3367/UFNr.0161.199109a.0001
  4. Zierep, J. (1958). Über rotationssymmetrische Zellularkonvektionsströmungen.  Z. Agev. Mah. Mech., Bd. 39, no. 7/8, pp. 329–333. https://doi.org/10.1002/zamm.19580380746
  5. Koschmieder, E. L. (1993). Bénard cells and Taylor vortices. Cambridge etc., Cambridge University Press, 337 p. https://doi.org/10.1002/zamm.19940741005
  6. Patochkina, O. L., Borts, B. V., & Tkachenko, V. I. (2015). Elementary Convection Cell in the Horizontal Layer of Viscous Incompressible Liquid with Rigid and Mixed Boundary Conditions. East-European J. of Phys., vol. 2, no. 1, pp. 23–31. https://doi.org/10.26565/2312-4334-2015-1-03
  7. Vinnikov, S. D. & Proskuriakov, B. V. (1988). Hydrophysics: a textbook for high schools. Leningrad: Gidrometeoizdat, 248 p.
  8. Landau, L. D. & Lifshitz, E. M. (1986). Theoretical physics: hydrodynamics. Vol. 6. Fluid Mechanics. Oxford: Pergamon Press, 540 p.
  9. Pat. RU 2293268, MPK F27V3/08. Sposob elektroplavky v duhovoi pechy postoiannoho toka. Yachykov, Y. M., Morozov, A. P., Portnova, Y. V. (RF). 2005115622/02, zaiavl. 23.05.2005, opubl. 10.02.2007, Biul. # 4. 10 p.
  10. Andreeva, O., Borts, B., Kostikov, A., & Tkachenko, V. (2016). Investigation of the oxide phase convective homogenization while vacuum-arc with hollow cathode remelting of steel. Eastern-European Journal of Enterprise Technologies, vol. 5, no. 5 (83), pp. 25–32. https://doi.org/10.15587/1729-4061.2016.79527
  11. Korn, G. A. & Korn, T. M. (1977). Mathematical handbook for scientists and engineers. Moscow: Nauka, 832 p.
  12. Fujiwhara, S. (1921). The natural tendency towards symmetry of motion and its application as a principle in meteorology. Quarterly Journal of the Royal Meteorological Society, vol. 47, no. 200, pp. 287–292. https://doi.org/10.1002/qj.49704720010
  13. Bozbey, L. S., Kostikov, A. O., & Tkachenko, V. I. (2016). Heat and mass transfer in the heated from below free cylindrical elementary convection cell with a conical cavity bottom. Journal of Mechanical Engineering, vol. 19, no. 2, pp. 19-24. https://doi.org/10.15407/pmach2016.02.019

 

Received 14 April 2017