IMPROVING THE MATHEMATICAL MODELS APPLIED FOR THE SOLUTION OF SOLID ASSEMBLY CONSTRUCTIONS THERMOELASTICITY PROBLEM

DOI https://doi.org/10.15407/pmach2017.02.042
Journal Journal of Mechanical Engineering – Problemy Mashynobuduvannia
Publisher A. Podgorny Institute for Mechanical Engineering Problems
National Academy of Science of Ukraine
ISSN 0131-2928 (Print), 2411-0779 (Online)
Issue Vol. 20 no. 2, 2017 (June)
Pages 42-46
Cited by J. of Mech. Eng., 2017, vol. 20, no. 2, pp. 42-46

 

Authors

S. A. Morhun, Admiral Makarov National University of Shipbuilding (9, Heroyiv Ukrayiny Ave, Mykolaiv, 54025, Ukraine), e-mail: serhii.morhun@nuos.edu.ua

 

Abstract

This article describes a method of constructing a refined finite element model of shaft and sleeve assembly structures having a significant distribution in power engineering. Using the developed three-dimensional finite elements, a contact thermo-elastic problem was solved for this type of joints. The displacement distribution field on the end surfaces of the shaft and sleeve, as well as the temperature distribution field in the joint are obtained.

 

Keywords: three-dimensional finite elements, shaft, sleeve, fields of displacements and temperatures, clearance, stress

 

References

  1. Pykhalov, A. A. & Milov, А. Ye. (2007). Kontaktnaya zadacha staticheskogo i dinamicheskogo analiza sbornykh rotorov turbomashin [The contact task of static and dynamic analysis of prefabricated rotors of turbomachines]. Irkutsk: Izdatelstvo Irkutskogo gosudarstvennogo tekhnicheskogo universiteta, 192 p. (in Russian).
  2. Tsvik, L. B. (1980). Principle of alternation in problems of the conjugation and contact of solid deformable bodies. Soviet Applied Mechanics, vol. 16, iss. 1, pp. 9–13. https://doi.org/10.1007/BF00884606
  3. Gill, P. A. T. & Ucmaklioglu, M. (1979). Isoparametric finite elements for analysis of shell segments and non-axisymmetric shells. J. of Sound and Vibration, vol. 65, iss. 2, pp. 259−273. https://doi.org/10.1016/0022-460X(79)90519-4
  4. Sosunov, V. A. & Chepkin, V. M. (Eds.) (2003). Teoriya, raschet i proyektirovaniye aviatsionnykh dvigateley i energeticheskikh ustanovok [Theory, calculation and design of aircraft engines and power plants]. Moscow: Izdatelstvo Moskovskogo aviatsionnogo instituta, 688 p. (in Russian).
  5. Samarskiy, A. A. & Vabishchevich, P. N. (2003). Vychislitelnaya teploperedacha [Computational heat transfer]. Moscow: Editorial URSS, 784 p. (in Russian).
  6. Jiang, D., Pierre, С., & Shaw, S. W. (2005). The construction of non-linear normal modes for systems with internal resonance. Intern. J. of Non-Linear Mechanics, vol. 40, iss. 5, pp. 729−746. https://doi.org/10.1016/j.ijnonlinmec.2004.08.010
  7. Chen, L.-W. & Peng, W.-K. (1995). Dynamic stability of rotating blades with geometric non-linearity. J. of Sound and Vibration, vol. 187, iss. 3, pp. 421−433. https://doi.org/10.1006/jsvi.1995.0533
  8. Liew, K. M. & Lim, C. W. (1996). Vibration of doubly-curved shallow shells. Acta Mechanica, vol. 114, iss. 1–4, pp. 95−119. https://doi.org/10.1007/BF01170398

 

Received 15 March 2017

Published 30 June 2017