DEVELOPMENT OF THE 500 KW AND 1 MW ORC TURBINE FLOW PARTS

DOI https://doi.org/10.15407/pmach2017.03.012
Journal Journal of Mechanical Engineering – Problemy Mashynobuduvannia
Publisher A. Podgorny Institute for Mechanical Engineering Problems
National Academy of Science of Ukraine
ISSN 0131-2928 (Print), 2411-0779 (Online)
Issue Vol. 20, no. 3, 2017 (September)
Pages 12-19
Cited by J. of Mech. Eng., 2017, vol. 20, no. 3, pp. 12-19

 

Authors

R. Rusanov, The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences (14, Fiszera St., Gdańsk 80-231, Poland), e-mail: rrusanov@imp.gda.pl, ORCID: 0000-0003-2930-2574

M. Szymaniak, The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences (14, Fiszera St., Gdańsk 80-231, Poland)

A. Rusanov, A. Podgorny Institute of Mechanical Engineering Problems of NASU (2/10, Pozharsky St., Kharkiv, 61046, Ukraine), e-mail: rusanov@ipmach.kharkov.ua, ORCID: 0000-0002-9957-8974

P. Lampart, The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences (14, Fiszera St., Gdańsk 80-231, Poland), ORCID: 0000-0003-3786-7428

 

Abstract

The paper presents several variants of the flow paths of axial turbines with a capacity of 500 kW and 1 MW for a cogeneration plant using MDM silicone oil as a working medium. The only geometric constraint for the design of these turbines was a minimum blade height of 20 mm. The final three-dimensional calculations of all turbine stages were carried out taking into account the real properties of the working fluid based on the modified Benedict-Webb-Rubin equation of state. The gas-dynamic efficiency of the developed turbine flow paths satisfies the requirements for energy machines of this kind.

 

Keywords: ORC, flow path, spatial flow, analytical profiling method, benedict-Webb-Rubin equation with 32 members

 

References

  1. Duvia, A. & Gaia M. (2002). ORC plants for power production from biomasss from 0.4 to 1.5 MWe. Technology, efficiency, practical experiences and economy, Proc. 7th Holzenergie Symposium, ETH Zürich.
  2. Shcheglyaev, A. V. (1976). Parovye turbiny. Moscow: Energiya, 358 p.
  3. Rusanov, A. V., Pashchenko, N. V., & Kosianova, A. I. (2009). Metod analiticheskogo profilirovaniia lopatochnykh ventsov protochnykh chastei osevykh turbin[Method of the analytical profiling of blading of flow part of axial turbines. Vostochno-Evropeiskii zhurnal peredovykh tehnologii – Eastern-European Journal of Enterprise Technologies, iss. 2/7 (38), pp. 32 – 37.
  4. Rusanov, A. V., Shatravka, O. I., & Kosyanova, A. I. (2009). Profilirovanie radialno-osevyh turbin s ispolzovaniyem sovremennyh kompyuternyh tehnologiy. Vostochno-Evropeiskii zhurnal peredovykh tehnologii – Eastern-European Journal of Enterprise Technologies, iss. 4/4 (40), pp. 58–62.
  5. Yershov, S. V. & Rusanov, A. V. (1996). The complex program of calculation of three-dimensional gas flows in multistage turbomachinery «FlowER». State Agency of Ukraine on Copyright and Related Rights, PA number 77: 1.
  6. Rusanov, A. V. & Yershov, S. V. (2008). Matematicheskoje modelirovanie nestatsionarnykh gazodinamicheskih protsessov v protochnyh chastyah turbomashin. Kharkov: A. Podgorny Institute of Mechanical Engineering Problems of NASU, 275 p.
  7. Lampart, P., Rusanov, A., & Yershov, S. (2005). Validation of 3D RANS Solver with a State Equation of Thermally Perfect and Calorically Imperfect Gas on a Multi-Stage Low-Pressure Steam Turbine Flow. Journal of Fluids Engineering, vol. 127, iss. 1, pp. 83–93. https://doi.org/10.1115/1.1852491
  8. Lampart, P., Yershov, S., & Rusanov, A. (2005). Increasing flow efficiency of high-pressure and low-pressure stream turbine stages from numerical optimization of 3D blading. Engineering Optimization, vol. 37, iss. 2, pp. 145–166. https://doi.org/10.1080/03052150512331315497
  9. REFPROP, National Institute of Standards and Technology Standard Reference Database Number 23. – Available from:: http://www.nist.gov/srd/nist23.htm
  10. Rusanov, A. V. (2013). Interpolatsionno-analiticheskij metod ucheta realnykh svojstv gazov i zhidkostej. [Interpolation-analytical method of taking into account real properties of gases and fluids]. Vostochno-Evropeiskii zhurnal peredovykh tehnologii – Eastern-European Journal of Enterprise Technologies, iss. 3/10 (63), pp. 53−57.
  11. IAPWS, Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. – Available from: http://www.iapws.org.
  12. Younglove, B. A. & Ely, J. F. (1987). Thermophysical Properties of Fluids. II. Methane, Ethane, Propane, Isobutane, and Normal. Journal of Physical and Chemical Reference Data, vol. 16, iss. 4, pp. 577–798. https://doi.org/10.1063/1.555785
  13. Nashchokin, V. V. (1980). Tehnicheskaya termodinamika i teploperedacha. Moscow: Vysshaya shkola, 496 p.
  14. Rusanov, R., Szymaniak, M., Jędrzejewski, Ł., & Bagiński, P. (2014). Opracowanie kanału przepływowego turbiny osiowej ORC na czynnik roboczy MDM 500 kW i 1 MW z łopatkami kształtowanymi wzdłuż wysokości kanału. Nr arch. 1063/2014. Gdańsk: IMP PAN.

 

Received 20 June2017

Published 30 September 2017