DEVELOPMENT OF THE 500 KW AND 1 MW ORC TURBINE FLOW PARTS
DOI | https://doi.org/10.15407/pmach2017.03.012 |
Journal | Journal of Mechanical Engineering – Problemy Mashynobuduvannia |
Publisher | A. Podgorny Institute for Mechanical Engineering Problems National Academy of Science of Ukraine |
ISSN | 0131-2928 (Print), 2411-0779 (Online) |
Issue | Vol. 20, no. 3, 2017 (September) |
Pages | 12-19 |
Cited by | J. of Mech. Eng., 2017, vol. 20, no. 3, pp. 12-19 |
Authors
R. Rusanov, The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences (14, Fiszera St., Gdańsk 80-231, Poland), e-mail: rrusanov@imp.gda.pl, ORCID: 0000-0003-2930-2574
M. Szymaniak, The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences (14, Fiszera St., Gdańsk 80-231, Poland)
A. Rusanov, A. Podgorny Institute of Mechanical Engineering Problems of NASU (2/10, Pozharsky St., Kharkiv, 61046, Ukraine), e-mail: rusanov@ipmach.kharkov.ua, ORCID: 0000-0002-9957-8974
P. Lampart, The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences (14, Fiszera St., Gdańsk 80-231, Poland), ORCID: 0000-0003-3786-7428
Abstract
The paper presents several variants of the flow paths of axial turbines with a capacity of 500 kW and 1 MW for a cogeneration plant using MDM silicone oil as a working medium. The only geometric constraint for the design of these turbines was a minimum blade height of 20 mm. The final three-dimensional calculations of all turbine stages were carried out taking into account the real properties of the working fluid based on the modified Benedict-Webb-Rubin equation of state. The gas-dynamic efficiency of the developed turbine flow paths satisfies the requirements for energy machines of this kind.
Keywords: ORC, flow path, spatial flow, analytical profiling method, benedict-Webb-Rubin equation with 32 members
References
- Duvia, A. & Gaia M. (2002). ORC plants for power production from biomasss from 0.4 to 1.5 MWe. Technology, efficiency, practical experiences and economy, Proc. 7th Holzenergie Symposium, ETH Zürich.
- Shcheglyaev, A. V. (1976). Parovye turbiny. Moscow: Energiya, 358 p.
- Rusanov, A. V., Pashchenko, N. V., & Kosianova, A. I. (2009). Metod analiticheskogo profilirovaniia lopatochnykh ventsov protochnykh chastei osevykh turbin[Method of the analytical profiling of blading of flow part of axial turbines. Vostochno-Evropeiskii zhurnal peredovykh tehnologii – Eastern-European Journal of Enterprise Technologies, iss. 2/7 (38), pp. 32 – 37.
- Rusanov, A. V., Shatravka, O. I., & Kosyanova, A. I. (2009). Profilirovanie radialno-osevyh turbin s ispolzovaniyem sovremennyh kompyuternyh tehnologiy. Vostochno-Evropeiskii zhurnal peredovykh tehnologii – Eastern-European Journal of Enterprise Technologies, iss. 4/4 (40), pp. 58–62.
- Yershov, S. V. & Rusanov, A. V. (1996). The complex program of calculation of three-dimensional gas flows in multistage turbomachinery «FlowER». State Agency of Ukraine on Copyright and Related Rights, PA number 77: 1.
- Rusanov, A. V. & Yershov, S. V. (2008). Matematicheskoje modelirovanie nestatsionarnykh gazodinamicheskih protsessov v protochnyh chastyah turbomashin. Kharkov: A. Podgorny Institute of Mechanical Engineering Problems of NASU, 275 p.
- Lampart, P., Rusanov, A., & Yershov, S. (2005). Validation of 3D RANS Solver with a State Equation of Thermally Perfect and Calorically Imperfect Gas on a Multi-Stage Low-Pressure Steam Turbine Flow. Journal of Fluids Engineering, vol. 127, iss. 1, pp. 83–93. https://doi.org/10.1115/1.1852491
- Lampart, P., Yershov, S., & Rusanov, A. (2005). Increasing flow efficiency of high-pressure and low-pressure stream turbine stages from numerical optimization of 3D blading. Engineering Optimization, vol. 37, iss. 2, pp. 145–166. https://doi.org/10.1080/03052150512331315497
- REFPROP, National Institute of Standards and Technology Standard Reference Database Number 23. – Available from:: http://www.nist.gov/srd/nist23.htm
- Rusanov, A. V. (2013). Interpolatsionno-analiticheskij metod ucheta realnykh svojstv gazov i zhidkostej. [Interpolation-analytical method of taking into account real properties of gases and fluids]. Vostochno-Evropeiskii zhurnal peredovykh tehnologii – Eastern-European Journal of Enterprise Technologies, iss. 3/10 (63), pp. 53−57.
- IAPWS, Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. – Available from: http://www.iapws.org.
- Younglove, B. A. & Ely, J. F. (1987). Thermophysical Properties of Fluids. II. Methane, Ethane, Propane, Isobutane, and Normal. Journal of Physical and Chemical Reference Data, vol. 16, iss. 4, pp. 577–798. https://doi.org/10.1063/1.555785
- Nashchokin, V. V. (1980). Tehnicheskaya termodinamika i teploperedacha. Moscow: Vysshaya shkola, 496 p.
- Rusanov, R., Szymaniak, M., Jędrzejewski, Ł., & Bagiński, P. (2014). Opracowanie kanału przepływowego turbiny osiowej ORC na czynnik roboczy MDM 500 kW i 1 MW z łopatkami kształtowanymi wzdłuż wysokości kanału. Nr arch. 1063/2014. Gdańsk: IMP PAN.
Received 20 June2017
Published 30 September 2017