NONLINEAR DEFORMATION OF A TWO-LAYER PLANE CURVILINEAR SYSTEM

DOI https://doi.org/10.15407/pmach2017.03.032
Journal Journal of Mechanical Engineering – Problemy Mashynobuduvannia
Publisher A. Podgorny Institute for Mechanical Engineering Problems
National Academy of Science of Ukraine
ISSN 0131-2928 (Print), 2411-0779 (Online)
Issue Vol. 20, no. 3, 2017 (September)
Pages 32-39
Cited by J. of Mech. Eng., 2017, vol. 20, no. 3, pp. 32-39

 

Authors

N. I. Obodan, Oles Honchar Dnipro National University (72, Gagarin Ave., Dnipro, 49010, Ukraine), e-mail: kkt_fpm@ukr.net

N. A. Guk, Oles Honchar Dnipro National University (72, Gagarin Ave., Dnipro, 49010, Ukraine), e-mail: kkt_fpm@ukr.net

N. L. Kozakova, Oles Honchar Dnipro National University (72, Gagarin Ave., Dnipro, 49010, Ukraine), e-mail: kkt_fpm@ukr.net

 

Abstract

The article studies the nonlinear behavior of a two-layer curvilinear system loaded with a distributed surface load and perturbation in the form of a force applied to the lower layer. The task is formulated in a variation formulation. A numerical analysis of the nonlinear stress-strain state of a layer is performed, with  the state depending  on the height of the lower layer, angle of the model, friction coefficient, and relative stiffness of the layers. The possibility and features of the loss of stability of the lower layer and the entire system as a whole are established. Their relationship with the system parameters is investigated.

 

Keywords: plane contact problem, system stability, layer stability, layer separation, friction

 

References

  1. Guz, A. N. (2014). Establishing the Foundations of the Mechanics of Fracture of Materials Compressed Along Cracks (Review). International Applied Mechanics, vol. 50, iss. 1, pp. 1–57. https://doi.org/10.1007/s10778-014-0609-y
  2. Liu, P. F. & Islam, M. M. (2013). A nonlinear cohesive model for mixed-mod delamination of composites laminates. Composite Structure, vol. 106, pp. 47–56. https://doi.org/10.1016/j.compstruct.2013.05.049
  3. Chernyakin, S. A., & Skvortsov, Y. V. (2014). Analiz rosta rassloyeniy v kompozitnykh konstruktsiyakh [Analysis bundles growth in composite structures]. Vestnik Sibirskogo gos. ajerokosmicheskogo universitetata im. akad. Reshetneva – Bulletin of the Siberian state Aerospace University. Acad. Reshetnev, iss. 4(56), pp. 249–258 (in Russian).
  4. Parcevskij, V. V. (2003). Rassloenie v polimernyh kompozitah (obzor) [Stratification in polymer composites (review)]. Izvestija RAN. Mehanika tverdogo tela – Mechanics of solids, no. 5, pp. 62–94 (in Russian).
  5. Akbarov, S. D. (2012). Stability Loss and Buckling Delаmination. Berlin: Springer, 450 p. https://doi.org/10.1007/978-3-642-30290-9
  6. Fedorova, V. S., & Lovcov, A. D. (2013). Vzaimodejstvie gofrirovannoj metallicheskoj truby s uprugoj sredoj posredstvom trenija Kulona [Interaction of a corrugated metal pipe with an elastic medium by means of Coulomb friction]. Uchenye zametki Tihookeanskogo gosudarstvennogo universitetа – Scholarly notes Pacific State University, vol. 4, no. 4, pp. 1662–1669 (in Russian).
  7. Jun, L., Lui, X. Y., Nan, Y. Y., & Xuefeng, Y. (2016). Numerical and experimental analisis of delamination in the T-stiffeer integrated composite structure. Mechanics of Advanced Materials and Structures, vol. 23, iss. 10, pp. 1188–1196. https://doi.org/10.1080/15376494.2015.1068399
  8. Lukashevich, A. A. & Rozin, L. A. (2013). O reshenii kontaktnyh zadach stroitel’noj mehaniki s odnostoronnimi svjazjami i treniem metodom poshagovogo analiza [On the solution of contact problems of structural mechanics with one-sided constraints and friction by the step-by-step method]. Inzhenerno-stroitelnyi zhurnal – Magazine of Civil Engineering, no. 1, pp. 75–81 (in Russian). https://doi.org/10.5862/MCE.36.9
  9. Slobodyan, B. S., Lyashenko, B. A., Malanchuk, N. I., Marchuk, V. E., & Martynyak, R. M. (2016). Modeling of Contact Interaction of Periodically Textured Bodies with Regard for Frictional Slip. Journal of Math. Sciences, vol. 215, iss. 1, pp. 110–120.  https://doi.org/10.1007/s10958-016-2826-x
  10. Zernin, M. B., Babin, A. P., Mishin, A. V., & Burak, V. Ju. (2007). Modelirovanie kontaktnogo vzaimodejstvija s ispol’zovaniem polozhenij mehaniki «kontaktnoj psevdosredy» [Simulation of contact interaction using the “pseudo environment” mechanics]. Vestnik Brjanskogo tehnicheskogo universitetata – Bulletin of the Bryansk Technical University, no. 4(16), pp. 62–73 (in Russian).
  11. Aleksandrov, V. M. & Vorovich, I. (2001). Mehanika kontaktnyh vzaimodejstvij [Mechanics of Contact Interactions]. Moscow: Nauka (in Russian).
  12. Novozhilov, V. V. (1958). Teorija uprugosti [Theory of elasticity]. Leningrad: Sudpromgiz (in Russian).
  13. Bathe, K. & Wilson, E. L. (1985). Chislennii metod v konechno-elementnom analize [Numerical method in finite element analysis]. Moscow: Nauka (in Russian).
  14. Obodan, N. I., Lebedeyev, O. G., & Gromov, V. A. (2013). Nonlinear behavior and stability of thin-walled shells. New York: Springer.  https://doi.org/10.1007/978-94-007-6365-4
  15. Dinnik, A. N. (1946). Ustoychivost arok [Stability of arches]. Leningrad: OGIZ (in Russian).

 

Received 25 May 2017

Published 30 September 2017