Optimum Design of Reinforced Cylindrical Shells Under Combined Axial Compression and Internal Pressure

DOI https://doi.org/10.15407/pmach2021.02.050
Journal Journal of Mechanical Engineering – Problemy Mashynobuduvannia
Publisher A. Pidhornyi Institute for Mechanical Engineering Problems
National Academy of Science of Ukraine
ISSN  2709-2984 (Print), 2709-2992 (Online)
Issue Vol. 24, no. 2, 2021 (June)
Pages 50-58
Cited by J. of Mech. Eng., 2021, vol. 24, no. 2, pp. 50-58

Problemy mashynobuduvannia

Author

Heorhii V. Filatov, State Higher Educational Institution “Ukrainian State University of Chemical Technology” (8, Haharina St., Dnipro, 49005, Ukraine), e-mail: gvmfilatov@gmail.com, ORCID: 0000-0003-4526-1557

 

Abstract

This paper discusses the use of the random search method for the optimal design of single-layered rib-reinforced cylindrical shells under combined axial compression and internal pressure with account taken of the elastic-plastic material behavior. The optimality criterion is the minimum shell volume. The search area for the optimal solution in the space of the parameters being optimized is limited by the strength and stability conditions of the shell. When assessing stability, the discrete rib arrangement is taken into account. In addition to the strength and stability conditions of the shell, the feasible space is subjected to the imposition of constraints on the geometric dimensions of the structural elements being optimized. The difficulty in formulating a mathematical programming problem is that the critical stresses arising in optimally-compressed rib-reinforced cylindrical shells are a function of not only the skin and reinforcement parameters, but also the number of half-waves in the circumferential and meridional directions that are formed due to buckling. In turn, the number of these half-waves depends on the variable shell parameters. Consequently, the search area becomes non-stationary, and when formulating a mathematical programming problem, it is necessary to provide for the need to minimize the critical stress function with respect to the integer wave formation parameters at each search procedure step. In this regard, a method is proposed for solving the problem of optimally designing  rib-reinforced shells, using a random search algorithm whose learning is carried out not only depending on the objective function increment, but also on the increment of critical stresses at each extremum search step. The aim of this paper is to demonstrate a technique for optimizing this kind of shells, in which a special search-system learning algorithm is used, which consists in the fact that two problems of mathematical programming are simultaneously solved: that of minimizing the weight objective function and that of minimizing the critical stresses of shell buckling. The proposed technique is illustrated with a numerical example.

 

Keywords: reinforced cylindrical shell, optimal design, random search, critical buckling stresses.

 

Full text: Download in PDF

 

References

  1. Rastrigin, L. A. (1968). Statisticheskiye metody poiska [Statistical search methods]. Moscow: Nauka, 376 p. (in Russian).
  2. Rastrigin, L. A. (1965). Sluchaynyy poisk v zadachakh optimizatsii mnogoparametricheskikh sistem [Random search in optimization problems of multiparameter systems]. Riga: Zinatne, 287 p. (in Russian).
  3. Gurin, L. S., Dymarskiy, Ya. S., & Merkulov, A. D. (1986). Zadachi i metody optimalnogo raspredeleniya resursov [Problems and methods of optimal distribution of resources]. Moscow: Sovetskoye radio, 513 p. (in Russian).
  4. Bocharov, I. N. & Feldbaum, A. A. (1962). Avtomaticheskiy optimizator dlya poiska minimalnogo iz neskolkikh minimumov [Automatic optimizer for finding the minimum of several minima. Automation and telemechanics]. Avtomatika i telemekhanikaAutomation and Telemechanics, vol. 23, no. 3, pp. 67–73 (in Russian).
  5. Katkovnik, V. Ya. (1971). Zadacha approksimatsii funktsiy mnogikh peremennykh [Problem of approximation of functions of several variable]. Avtomatika i telemekhanikaAutomation and Telemechanics, vol. 23, no. 2, pp. 181–185 (in Russian).
  6. Fiacco, A. V. & Mccormick, G. P. (1968). Nonlinear programming: Sequential unconstrained minimization techniques. New York: John Wiley and Sons.
  7. Himmelblau, D. M. (1972). Applied Nonlinear Programming. New York: McGraw-Hill. 498 p.
  8. Brooks, S. H. (1958). A discussion of random methods for seeking maxims. Operations Research, vol. 2, iss. 6, pp. 244–251. https://doi.org/10.1287/opre.6.2.244.
  9. Каrnopp, D. C. (1965). Random search techniques for optimizations problems. Automatica, vol. 1, iss. 2–3, pp. 111–121. https://doi.org/10.1016/0005-1098(63)90018-9.
  10. Shumer, M. & Stejglitz, K. (1968). Adaptive step size random search. IEEE Transactions on Automatic Control, vol. 13, iss. 3, pp. 270–276. https://doi.org/10.1109/TAC.1968.1098903.
  11. Volynskiy, E. I. & Filatov, G. V. (1976). Primeneniye operatorov sglazhivaniya v optimalnom proyektirovanii rebristykh obolochek [Application of smoothing operators in optimal design of ribbed shells]. Referativnaya informatsiya o zakonchennykh NIR v vuzakh USSRAbstract information about completed research projects in the universities of the Ukrainian SSR, iss. 7, pp. 24–25 (in Russian).
  12. Filatov, G. V. (2014). Prilozheniye metodov sluchaynogo poiska k optimizatsii konstruktsiy [Application of random search methods to the optimization of structures]. Book 1. Germany, Saarbrücken: LAP LAMBERT Academic Publishing, 184 p. (in Russian).
  13. Matsilyavichus, D. A. & Chyuchyalis, A. M. (1970). Ob odnom algoritme sluchaynogo poiska dlya sinteza optimal’noy uprugoy sharnirno-sterzhnevoy sistemy [On a random search algorithm for the synthesis of an optimal elastic hinge-rod system]. Lit. mekh. sbornik – Lit. Mechanical Collection, no. 1 (6), pp. 77–83 (in Russian).
  14. Pochtman, Yu. M. & Tugay, O. V. (1979). Ustoychivost i vesovaya optimizatsiya mnogosloynykh podkreplennykh tsilindricheskikh obolochek pri kombinirovannom nagruzhenii [Stability and weight optimization of multilayer reinforced cylindrical shells under combined loading]. Gidroaeromekhanika i teoriya uprugostiHydroaeromechanics and Elasticity Theory, iss. 25, pp. 137–147 (in Russian).
  15. Pochtman, Yu .M. & Filatov, G. V. (1970). Issledovaniye deformatsiy gibkikh sterzhney metodom statisticheskikh ispytaniy [Research of deformations of flexible rods by the method of statistical tests]. Stroitelnaya mekhanika i raschet sooruzheniyStructural Mechanics and Calculation of Structures, no. 5, pp. 36–39 (in Russian).
  16. Pochtman, Y. M. & Filatov, G. V. (1972). Optimization of parameters of oscillating ribbed plates by method of random search. Strength of Materials, vol. 4, pp. 211–213. https://doi.org/10.1007/BF01527582.
  17. Filatov, G. V. (2006). Mass optimization of a compressed cylindrical shell with limited life. International Applied Mechanics, vol. 42, pp. 331–335. https://doi.org/10.1007/s10778-006-0090-3.
  18. Gellatly, R. A. & Gallagher, R. H. (1966). A procedure for automated minimum weight design. Part I. Theoret. Basis. Aeron. Quart., vol. 7, iss. 7, pp. 63–66.
  19. Golinski, J. & Lesniak, Z. K. (1966). Optimales entwerfev von konstruktioner mit hilfe der Monte-Carlo-methode. Bautechnik, vol. 43, iss. 9, pp. 47–54.
  20. Filatov, G. V. (2019). Application of random search method for the optimal designing of ribbed plates. International Journal of Emerging Technology and Advanced Engineering, vol. 9, iss. 10, pp. 223–228.
  21. Fraynt, M. Ya. (1970). Primeneniye sluchaynogo poiska k zadacham optimalnogo proyektirovaniya [Application of random search to optimal design problems]. Stroitelnaya mekhanika i raschet sooruzheniyStructural Mechanics and Analysis of Constructions, vol. 1, pp. 87–91 (in Russian).
  22. Guzhovskiy, V. V., Popov, N. N., Pasnichenko, V. I., & Filatov, G. V. (1975). Optimizatsiya dinamicheskikh sistem verkhnego stroyeniya rotornogo ekskavatora ERP-2500 [Optimization of dynamic systems of the upper structure of the bucket wheel excavator ERP-2500]. Gorno-transportnoye oborudovaniye razrezovMining and Transport Equipment of Open Pit Mines, pp. 3–12 (in Russian).
  23. Filatov, G. V. (2014). Prilozheniye metodov sluchaynogo poiska k optimizatsii konstruktsiy [Application of random search methods to optimization of structures]. Germany, Saarbrücken: LAP LAMBERT Academic Publishing, 177 p. (in Russian).
  24. Filatov, G. V. (2014). Teoreticheskiye osnovy evolyutsii matmodeley korrozionnogo razrusheniya [Theoretical foundations of evolution of mathematical models of corrosion fracture]. Germany, Saarbrücken: LAP LAMBERT Academic Publishing, 181 p. (in Russian).
  25. Panteleyev, A. V. & Rodionova, D. A. (2018). Primeneniye gibridnogo metoda sluchaynogo poiska v zadachakh optimizatsii elementov tekhnicheskikh sistem [Application of the hybrid random search method in optimization problems of elements of technical systems]. Nauchnyy vestnik Moskovskogo tekhnicheskogo universiteta grazhdanskoy aviatsiiCivil Aviation High Technologies, vol. 21, no. 3, pp. 139–149. https://doi.org/10.26467/2079-0619-2018-21-3-139-149.
  26. Senkin,V. S. & Syutkina-Doronina, S. V. (2018). Sovmestnoye primeneniye metodov sluchaynogo poiska s gradiyentnymi metodami optimizatsii proyektnykh parametrov i programm upravleniya raketnym obyektom [Combined application of random search methods with gradient methods for optimizing design parameters and missile object control programs]. Tekhnicheskaya mekhanikaTechnical Mechanics, no. 2, pp. 44–56 (in Russian). https://doi.org/10.15407/itm2018.02.044.
  27. Filatov, H. V. (2021). Optimal design of single-layered reinforced cylindrical shells. Journal of Mechanical Engineering – Problemy Mashynobuduvannia, vol. 24, no. 1, pp. 58–64. https://doi.org/10.15407/pmach2021.01.058.
  28. Filatov, H. V. (2020). Optimal design of smooth shells both with and without taking into account initial imperfections.  Journal of Mechanical Engineering – Problemy Mashynobuduvannia, vol. 23, no. 1, pp. 58–63. https://doi.org/10.15407/pmach2020.01.058.
  29. Fridman, M. M. (2016). Optimalnoye proyektirovaniye trubchatykh sterzhnevykh konstruktsiy, podverzhennykh korrozii [Optimal design of tubular rod structures subject to corrosion]. Problemy mashinostroyeniyaJournal of Mechanical Engineering, vol. 19, no. 3, pp. 37–42 (in Russian). https://doi.org/10.15407/pmach2016.03.037.
  30. Pal’chevskii, A. S. (1970). Minimal weight design of longitudinal cylindrical shells under joint axial compression and internal pressure. Soviet Applied Mechanics, vol. 6, pp. 1079–1083. https://doi.org/10.1007/BF00888908.
  31. Amiro, I. Ya. (1960). Doslidzhennia stiikosti rebrystoi tsylindrychnoi obolonky pry pozdovzhnomu stysku [Investigation of the stability of the ribbed cylindrical shell under longitudinal compression]. Prykladna mekhanikaApplied Mechanics, vol. IV, iss. 3, pp. 16–23 (in Ukrainian).
  32. Burns, A. B. (1966). Combined loads minimum weight analysis of stiffened plates and shells. Journal Spacecraft and Rockets, vol. 3, no. 2, pp. 235–240. https://doi.org/10.2514/3.28425.

 

Received 13 July 2020

Published 30 June 2021