Contemporary Approaches to the Vibration Diagnostics of Rotating Shafts

DOI https://doi.org/10.15407/pmach2022.01.015
Journal Journal of Mechanical Engineering – Problemy Mashynobuduvannia
Publisher A. Pidhornyi Institute for Mechanical Engineering Problems
National Academy of Science of Ukraine
ISSN  2709-2984 (Print), 2709-2992 (Online)
Issue Vol. 25, no. 1, 2022 (March)
Pages 15-23
Cited by J. of Mech. Eng., 2022, vol. 25, no. 1, pp. 15-23

 

Authors

Anatolii P. Bovsunovskyi, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” (37, Peremohy ave., Kyiv, 03056, Ukraine), e-mail: apbovsunovsky@gmail.com, ORCID: 0000-0001-9562-0250

Oleksandr Yu. Nosal, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” (37, Peremohy ave., Kyiv, 03056, Ukraine), ORCID: 0000-0003-3253-9652

 

Abstract

Rotating shafts are the most vulnerable part of steam turbines. They are subjected to a wide range of static and dynamic loading combined with high temperature. Different types of damage of rotating shafts in most cases are the result of this long-term combined loading. To avoid catastrophic failure of structural elements during operation of turbines, it is urgent to use reliable damage detection methods. A lot of investigations demonstrated that most appropriate as applied to the turbine shafts in operation are the vibration-based methods, in particular, the change of natural frequencies, the appearance of non-linear resonances, the change of vibrational spectrum and others. The paper contains the comparative analysis of most effective approaches to the vibration diagnostics of damage in rotating shafts of steam turbines.

 

Keywords: rotating shaft, vibration diagnostics of damage, natural frequencies, non-linear effects.

 

Full text: Download in PDF

 

References

  1. Bovsunovsky, A. & Surace, C. (2015). Non-linearities in the vibrations of elastic structures with a closing crack: A state of the art review. Mechanical Systems and Signal Processing, vol. 62–63, pp. 129–148. https://doi.org/10.1016/j.ymssp.2015.01.021.
  2. Zhou, T., Sun, Z., Xu, J., & Han, W. (2005). Experimental analysis of a cracked rotor. Journal of Dynamic Systems, Measurement, and Control, vol. 127, iss. 3, pp. 313–320. https://doi.org/10.1115/1.1978908.
  3. Adewusi, S. A. & Al-Bedoor, B. O. (2001). Wavelet analysis of vibration signals of an overhang rotor with a propagating transverse crack. Journal of Sound and Vibration, vol. 246, iss. 5, pp. 777–793. https://doi.org/10.1006/jsvi.2000.3611.
  4. Stoisser, C. M. & Audebert, S. (2008). Comprehensive theoretical, numerical and experimental approach for crack detection in power plant rotating machinery. Mechanical Systems and Signal Processing, vol. 22, iss. 4, pp. 818–844. https://doi.org/10.1016/j.ymssp.2007.11.013.
  5. Sanderson, A.F.P. (1992). The vibration behaviour of a large steam turbine generator during crack propagation through the generator rotor. In: IMechE International Conference on Vibrations in Rotating Machinery, Bath, UK, paper C432/102, pp. 263–273.
  6. Bachschmid, N., Pennacchi, P., & Tanzi, E. (2010). Cracked rotors. A survey on static and dynamic behaviour including modelling and diagnosis. Springer, Berlin-Heidelberg. https://doi.org/10.1007/978-3-642-01485-7.
  7. Sekhar, A. S. & Prabhu, B. S. (1992). Crack detection and vibration characteristics of cracked shaft. Journal of Sound and Vibration, vol. 157, iss. 2, pp. 375–381. https://doi.org/10.1016/0022-460X(92)90690-Y.
  8. Salawu, O. S. (2016). Detection of structural damage through changes in frequency: A review. Engineering Structures, vol. 19, iss. 9, pp. 718–723. https://doi.org/10.1016/S0141-0296(96)00149-6.
  9. Chondros, T. G. & Dimarogonas, A. D. (1998). Dynamic sensitivity of structures to cracks. Journal of Vibration and Acoustic. Stress, and Reliability Design, vol. 111, iss. 3, pp. 251–256. https://doi.org/10.1115/1.3269849.
  10. Liong, R. T. & Proppe, C. (2013). Application of the cohesive zone model for the evaluation of stiffness losses in a rotor with a transverse breathing crack. Journal of Sound and Vibration, vol. 332, iss. 8, pp. 2098–2110. https://doi.org/10.1016/j.jsv.2012.11.032.
  11. Gasch, R. (1976). Dynamic behaviour of a simple rotor with a cross-sectional crack. In: Institution of Mechanical Engineers Conference Publication, Vibration in rotating machinery, Conf. Paper No. C178/76, pp. 123–148.
  12. Inagaki, T., Kanki, H., & Shiraki, K. (1982). Transverse vibration of a general cracked-rotor bearing system. Journal of Mechanical Design, vol. 104, iss. 2, pp. 345–354. https://doi.org/10.1115/1.3256350.
  13. Mayes, I. W. & Davies, W. G. R. (1984). Analysis of the response of a multi-rotor bearing system containing a transverse crack in a rotor. Journal of Vibration and Acoustic. Stress, and Reliability Design, vol. 106, iss. 1, pp. 139–145. https://doi.org/10.1115/1.3269142.
  14. Jun, O.S. & Gadala, M. S. (2018). Dynamic behaviour analysis of cracked rotor. Journal of Sound and Vibration, vol. 309, iss. 1–2, pp. 210–245. https://doi.org/10.1016/j.jsv.2007.06.065.
  15. Bachschmid, N., Pennacchi, P., & Tanzi, E. (2008). Some remarks on breathing mechanism, on non-linear effects and on slant and helicoidal cracks. Mechanical Systems and Signal Processing, vol. 22, iss. 4, pp. 879–904. https://doi.org/10.1016/j.ymssp.2007.11.007.
  16. Nelson, H. D. & Nataraj, C. (2017). The dynamics of a rotor system with a cracked shaft. Journal of Vibration and Acoustic. Stress, and Reliability Design, vol. 108, iss. 2, pp. 189–196. https://doi.org/10.1115/1.3269321.
  17. Dimarogonas, A. D. & Papadopoulos, C. A. (1983). Vibration of cracked shafts in bending. Journal of Sound and Vibration, vol. 91, iss. 4, pp. 583–593. https://doi.org/10.1016/0022-460X(83)90834-9.
  18. Rubio, P., Muñoz-Abella, B., & Rubio, L. (2015). FEM analysis of the SIF in rotating shafts containing breathing elliptical cracks. In: Pennacchi P. (eds). Proceedings of the 9th IFToMM International Conference on Rotor Dynamics. Mechanisms and Machine Science, vol. 21, pp. 323–333. https://doi.org/10.1007/978-3-319-06590-8_25.
  19. Darpe, A. K., Gupta, K., & Chawla, A. (2014). Transient response and breathing behaviour of a cracked Jeffcott rotor. Journal of Sound and Vibration, vol. 272, iss. 1–2, pp. 207–243. https://doi.org/10.1016/S0022-460X(03)00327-4.
  20. Sinou, J. & Lees, A. W. (2005). The influence of cracks in rotating shafts. Journal of Sound and Vibration, vol. 285, iss. 4–5, pp. 1015–1037. https://doi.org/10.1016/j.jsv.2004.09.008.
  21. Al-Shudeifat, M. A. & Butcher, E. A. (2011). New breathing functions for the transverse breathing crack of the cracked rotor system: Approach for critical and subcritical harmonic analysis. Journal of Sound and Vibration, vol. 330, iss. 3, pp. 526–544. https://doi.org/10.1016/j.jsv.2010.08.022.
  22. Ishida, Y. (2008). Cracked rotors: Industrial machine case histories and non-linear effects shown by simple Jeffcott rotor. Mechanical Systems and Signal Processing, vol. 22, iss. 4, pp. 805–817. https://doi.org/10.1016/j.ymssp.2007.11.005.
  23. Ricci, R. & Pennacchi, P. (2012). Discussion of the dynamic stability of a multi-degree-of-freedom rotor system affected by a transverse crack. Mechanism and Machine Theory, vol. 58, pp. 82–100. https://doi.org/10.1016/j.mechmachtheory.2012.08.002.
  24. Wu, M.-C. & Huang, S.-C. (2020). Vibration and crack detection of a rotor with speed-dependent bearings. International Journal of Mechanical Sciences, vol. 40, iss. 6, pp. 545–555. https://doi.org/10.1016/S0020-7403(97)00076-3.
  25. Sinou, J. (2008). Detection of cracks in rotor based on the 2x and 3x superharmonics frequency components and the crack-unbalance interactions. Communications in Non-linear Science and Numerical Simulation, vol. 13, pp. 2024–2040. https://doi.org/10.1016/j.cnsns.2007.04.008.
  26. Bovsunovsky, A. P. (2017). Efficiency analysis of vibration based crack diagnostics in rotating shafts. Engineering Fracture Mechanics, vol. 173, pp. 118–129. https://doi.org/10.1016/j.engfracmech.2017.01.014.
  27. Green, I. & Casy, C. (2005). Crack detection in a rotor dynamic system by vibration monitoring – part I: Analysis. Journal of Engineering for Gas Turbines and Power, vol. 127, iss. 2, pp. 425–436. https://doi.org/10.1115/1.1789514.
  28. Darpe, A. K. (2007). Dynamics of a Jeffcott rotor with slant crack. Journal of Sound and Vibration, vol. 303, iss. 1–2, pp. 1–28. https://doi.org/10.1016/j.jsv.2006.07.052.
  29. Zhou, T., Xu, J., & Sun, Z. (2011). Dynamic analysis and diagnosis of a cracked rotor. Trans. ASME. Journal of Vibration and Acoustic, vol. 123, iss. 4, pp. 539–543. https://doi.org/10.1115/1.1401075.
  30. Dimarogonas, A. D. (1996). Vibration of cracked structures: A state of the art review. Engineering Fracture Mechanics, vol. 55, iss. 5, pp. 831–857. https://doi.org/10.1016/0013-7944(94)00175-8.
  31. Muszynska, A., Goldman, P., & Bently, D. E. (1992). Torsional/lateral vibration cross-coupled responses due to shaft anisotropy: A new tool in shaft crack detection. In.: International Conference on Vibrations in Rotating Machinery (ImechE), Bath, UK, Paper No. C432/090, pp. 257–262.
  32. Ishida, Y., Hirokawa, K., & Hirose, M. (1995). Vibrations of a cracked rotor (3/2-order supersubharmonic and 1/2-order subharmonic resonances). In.: Proceedings of 15th Biennial Conference on Mechanical Vibration and Noise, Boston, MA, American Society of Mechanical Engineers, Design Engineering Division, vol. 84, iss 3, pp. 605–612. https://doi.org/10.1115/DETC1995-0301.
  33. Ichimonji, M., Kazao, Y., Watanabe, S., & Nonaka, S. (1994). Dynamics of a rotor system with a slant crack under torsional vibration. In.: Non-linear and Stochastic Dynamics, ASME, Applied Mechanics Division, Chicago, Illinois, vol. 192, pp. 81–90.
  34. Ramezanpour, R., Ghayour, M., & Ziaei-Rad, S. (2012). Dynamic behaviour of Jeffcott rotors with an arbitrary slant crack orientation on the shaft. Applied and Computational Mechanics, vol. 6, iss. 1, pp. 35–52.
  35. Sekhar, A. S. & Balaji Prasad, P. (2019). Dynamic analysis of a rotor system considering a slant crack in the shaft. Journal of Sound and Vibration, vol. 208, iss. 3, pp. 457–473. https://doi.org/10.1006/jsvi.1997.1222.
  36. Darpe, A. K. (2007). A novel way to detect transverse surface crack in a rotating shaft. Journal of Sound and Vibration, vol. 305, iss. 1–2, pp. 151–171. https://doi.org/10.1016/j.jsv.2007.03.070.
  37. Imam, I., Azzaro, S. H., Bankert, R. J., & Scheibel, J. (2019). Development of an on-line rotor crack detection and monitoring system. Journal of Vibration and Acoustic. Stress, and Reliability Design, vol. 111, iss. 3, pp. 241–250. https://doi.org/10.1115/1.3269848.
  38. Dimarogonas, A. D. & Papadopoulos, C. A. (1988). Stability of cracked rotors in the coupled vibration mode. Journal of Vibration and Acoustic, vol. 110, iss. 3, pp. 356–359. https://doi.org/10.1115/1.3269525.

 

Received 22 February 2022

Published 30 March 2022