Development of the flow part of reactive type HPC of K-325-23.5 series steam turbine based on the use of modern computer technologies

image_print
DOI https://doi.org/10.15407/pmach2021.04.006
Journal Journal of Mechanical Engineering – Problemy Mashynobuduvannia
Publisher A. Pidhornyi Institute for Mechanical Engineering Problems
National Academy of Science of Ukraine
ISSN  2709-2984 (Print), 2709-2992 (Online)
Issue Vol. 24, no. 4, 2021 (December)
Pages 6-16
Cited by J. of Mech. Eng., 2021, vol. 24, no. 4, pp.  6-16

 

Authors

Andrii V. Rusanov, A. Pidhornyi Institute of Mechanical Engineering Problems of NASU (2/10, Pozharskyi str., Kharkiv, 61046, Ukraine), e-mail: rusanov@ipmach.kharkov.ua, ORCID: 0000-0002-9957-8974

Viktor H. Subotin, Joint-Stock Company “Ukrainian Energy Machines” (formerly JSC “Turboatom”) (199, Moskovskyi ave., Kharkiv, 61037, Ukraine), e-mail: office@ukrenergymachines.com , ORCID: 0000-0002-2489-5836

Viktor L. Shvetsov, Joint-Stock Company “Ukrainian Energy Machines” (formerly JSC “Turboatom”) (199, Moskovskyi ave., Kharkiv, 61037, Ukraine), e-mail: shvetsov@ukrenergymachines.com, ORCID: 0000-0002-2384-1780

Roman A. Rusanov, A. Pidhornyi Institute of Mechanical Engineering Problems of NASU (2/10, Pozharskyi str., Kharkiv, 61046, Ukraine), e-mail: roman_rusanov@ipmach.kharkov.ua, ORCID: 0000-0003-2930-2574

Serhii A. Palkov, A. Pidhornyi Institute of Mechanical Engineering Problems of NASU (2/10, Pozharskyi str., Kharkiv, 61046, Ukraine), Joint-Stock Company “Ukrainian Energy Machines” (formerly JSC “Turboatom”) (199, Moskovskyi ave., Kharkiv, 61037, Ukraine), e-mail: sergpalkov@ukrenergymachines.com, ORCID: 0000-0002-2215-0689

Ihor A. Palkov, A. Pidhornyi Institute of Mechanical Engineering Problems of NASU (2/10, Pozharskyi str., Kharkiv, 61046, Ukraine), Joint-Stock Company “Ukrainian Energy Machines” (formerly JSC “Turboatom”) (199, Moskovskyi ave., Kharkiv, 61037, Ukraine), e-mail: palkovigor@ukrenergymachines.com, ORCID: 0000-0002-4639-6595

Maryna O. Chuhai, A. Pidhornyi Institute of Mechanical Engineering Problems of NASU (2/10, Pozharskyi str., Kharkiv, 61046, Ukraine), e-mail: mchugay@ipmach.kharkov.ua, ORCID: 0000-0002-0696-4527

 

Abstract

The results of gas-dynamic design of a new flow part of a reactive type high-pressure cylinder (HPC) of the K-300 series condensing steam turbine are presented. The turbine was developed using a comprehensive methodology implemented in the IPMFlow software package. The methodology includes gas-dynamic calculations of various levels of complexity, as well as methods for analytical construction of the spatial shape of the blade rows based on a limited number of parameterized values. The real thermodynamic properties of water and steam were taken into account in 3D calculations of turbulent flows. At the final stage, 3D end-to-end calculations of the HPC, which consists of 18 stages, were carried out. The technology of parallel computing was applied in the said calculations. It is shown that a significant increase in efficiency and power has been achieved in the developed HPC due to the use of reactive type stages with modern smooth blade profiles and monotonic meridional contours.

 

Keywords: steam turbine, high pressure cylinder, flow part, reactive type blading, spatial flow, computational studies.

 

Full text: Download in PDF

 

References

  1. (2004). Directive 2004/8/ec of the European parliament and of the council of 11 February 2004 on the promotion of cogeneration based on a useful heat demand in the internal energy market and amending Directive 92/42/EEC. Official Journal of the European Union, 60 p.
  2. (2019). Report for 2019 on the condition of the Polish power system prepared by PSE. WysokieNapiecie.pl: official site. URL: https://wysokienapiecie.pl/27524-energetyka-w-polsce-w-2019-roku-moc-produkcja-energii-wg-danych-pse/.
  3. (2021). European Electricity Review 6-month update H1-2021. Ember: official site. July 2021. URL: https://ember-climate.org/project/european-electricity-review-h1-2021/.
  4. Petinrin, J. O. & Shaaban, M. (2012). Overcoming challenges of renewable energy on future smart grid. TELKOMNIKA (Telecommunication, Computing, Electronics and Control), vol. 10, no. 2, pp. 229–234. https://doi.org/10.12928/telkomnika.v10i2.781.
  5. (2019). Assessing the effectiveness of EU policy on large combustion plants in reducing air pollutant emissions: Report No. 7/2019. European Environment Agency. Luxemburg: Publication Office of Europe Union. https://doi.org/10.2800/13745.
  6. Shvetsov, V. L. (2006). Opyt OAO «Turboatom» v sozdanii i sovershenstvovanii energosberegayushchego oborudovaniya dlya teplovykh i atomnykh elektrostantsiy [Experience of OJSC “Turboatom” in the creation and improvement of energy-saving equipment for thermal and nuclear power plants]. Vestnik NTU «KHPI». Seriya: «Energeticheskiye i teplotekhnicheskiye protsessy i oborudovaniye»Bulletin of the National Technical University “KhPI”. Series: Power and Heat Engineering Processes and Equipment, no. 5, pp. 6–11 (in Russian).
  7. Mikhailov, V. E., Smolkin, Y. V., & Sukhorukov, Y. G. (2021). The main directions for improving the efficiency of the power equipment of a CHPP. Thermal Engineering, vol. 68, pp. 54–58. https://doi.org/10.1134/S0040601520120046.
  8. Shibaev, T. L. (2020). A review of trends in development of cogeneration steam turbine units. Thermal Engineering, vol. 67, pp. 903–908. https://doi.org/10.1134/S0040601520120071.
  9. Chaplin, R. A. (2009). Steam turbine components and systems. Encyclopedia of Life Support Systems (EOLSS). Thermal power plants, vol. 3, pp. 1–7.
  10. Bazeiev, Ye. T., Bileka, B. D. Ye., Vasyliev, P., Varlamov, H. B., Volchyn, I. A., & Dashkiiev, Yu. H. (2013). Enerhetyka: istoriia, suchasnist i maibutnie [Energy: history, present and future]: in 5 books. Book 3: Rozvytok teploenerhetyky ta hidroenerhetyky [Development of heat and hydropower] by Klymenko, V. M., Landau, Yu. O., Sihal, I. Ya. (eds). Kyiv, 399 p. (in Ukrainian).
  11. Wolf, R. & Romanov, K. (2014). Steam turbines: Siemens reactive blading – designed for highest efficiency and minimal performance degradation. Siemens AG, 19 p.
  12. (2018). ANSYS-Fluent. Fluid Simulation Software. ANSYS: Official site. URL: http://www.ansys.com/Products/Fluids/ANSYS-Fluent.
  13. (2020). NUMECA – Tubomachinery solution. NUMECA: Official site. URL: https://www.numeca.com/en_eu/turbomachinery.
  14. Haller, B., D’Ovidio, A., Henson, J., Beevers, A., & Gupta, A. (2019). Development of improved reaction technology blading (RTB LAR) for large steam turbines. Proceedings of the ASME 2019 Power Conference. Salt Lake City, Utah, USA, July 15–18, 2019. V001T08A001. https://doi.org/10.1115/POWER2019-1804.
  15. Yershov, S., Rusanov, A., Gardzilewicz, A., & Lampart, P. (1999). Calculations of 3D viscous compressible turbomachinery flows. Proceedings of 2nd Symposium on Computational Technologies for Fluid / Thermal / Chemical Systems with Industrial Applications, ASME PVP Division Conference, 1–5 August 1999, Boston, USA, PVP, vol. 397 (2), pp. 143–154.
  16. Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, vol. 32, no. 8, pp. 1598–1605. https://doi.org/10.2514/3.12149.
  17. Rusanov, A. V., Lampart, P., Pashchenko, N. V., & Rusanov, R. A. (2016). Modelling 3D steam turbine flow using thermodynamic properties of steam IAPWS-95. Polish Maritime Research, vol. 23, no. 1, pp. 61–67. https://doi.org/10.1515/pomr-2016-0009.
  18. Rusanov, A., Rusanov, R., Klonowicz, P., Lampart, P., Żywica, G., & Borsukiewicz, A. (2021). Development and experimental validation of real fluid models for CFD calculation of ORC and steam turbine flows. Materials, vol. 14, paper ID 6879. https://doi.org/10.3390/ma14226879.
  19. Fischer, P. F. & Venugopal, M. (1995). A commercial CFD application on a shared memory multiprocessor using MPI. Parallel Computational Fluid Dynamics 1995. Implementations and Results Using Parallel Computers, pp. 231–238. https://doi.org/10.1016/B978-044482322-9/50083-9.
  20. Rusanov, A., Rusanov, R., & Lampart, P. (2015). Designing and updating the flow part of axial and radial-axial turbines through mathematical modeling. Open Engineering, no. 5, pp. 399–410. https://doi.org/10.1515/eng-2015-0047.
  21. Parsons, C. A. (1911). The steam turbine. The rede lecture. Cambridge: Cambridge University Press, 67 p.
  22. Rusanov, A. V., Kosyanova, A. I., Sukhorebryy, P. N., & Khorev, O. N. (2013). Gazodinamicheskoye sovershenstvovaniye protochnoy chasti tsilindra vysokogo davleniya parovoy turbiny K-325-23.5 [Gas-dynamic improvement of the steam turbine K-325-23.5 high-pressure cylinder setting]. Nauka i innovatsiiScience and Innovation, vol. 9, no. 1, pp. 33–40 (in Russian). https://doi.org/10.15407/scin9.03.033.
  23. Bykov, Yu. A., Rusanov, A. V., & Shvetsov, V. L. (2020). Numerical study of flow irregularity in a new type control section of steam turbine high-pressure module. Journal of Mechanical Engineering – Problemy Mashynobuduvannia, vol. 23, no. 2, pp. 6–14. https://doi.org/10.15407/pmach2020.02.006.
  24. Rusanov, A. V., Shvetsov, V. L., Kosianova, A. I., Bykov, Yu. A., Pashchenko, N. V., Chuhai, M. O., Rusanov, R. A. (2020). The gas-dynamic efficiency increase of the K-300 series steam turbine control compartment. Journal of Mechanical Engineering – Problemy Mashynobuduvannia, vol. 23, no. 4, pp. 6–13. https://doi.org/10.15407/pmach2020.04.006.
  25. Zaryankin, A. E., Lavyrev, I. P., & Cherkasov, M. A. (2020). Nozzle steam distribution with a remote mixing chamber. Thermal Engineering, vol. 67, pp. 655–659. https://doi.org/10.1134/S0040601520090104.
  26. Nguyen, K. K. & Laskin, A. S. (2015). Vliyaniye otnosheniya u/C0 na nestatsionarnyye nagruzki i KPD osevoy turbinoy stupeni [Influence of the u/C0 ratio on unsteady loads and efficiency of an axial turbine stage]. Nauka i obrazovaniye: nauchnoye izdaniye MGTU im. N. E. Baumana – Science and Education of Bauman MSTU, no. 6, pp. 56–66 (in Russian). https://doi.org/10.7463/0615.0786614.
  27. Rusanov, A. & Rusanov, R. (2021). The influence of stator-rotor interspace overlap of meridional contours on the efficiency of high-pressure steam turbine stages. Archives of Thermodynamics, vol. 42, no. 1, pp. 97–114. https://doi.org/10.24425/ather.2021.136949.

 

Received 02 November 2021

Published 30 December 2021