Analysis of the Efficiency of a Power Generating Plant Operating on the Basis of the Brayton Thermodynamic Cycle and Energy Recuperation

image_print
DOI https://doi.org/10.15407/pmach2023.03.006
Journal Journal of Mechanical Engineering – Problemy Mashynobuduvannia
Publisher Anatolii Pidhornyi Institute for Mechanical Engineering Problems
National Academy of Science of Ukraine
ISSN  2709-2984 (Print), 2709-2992 (Online)
Issue Vol. 26, no. 3, 2023 (September)
Pages 6-14
Cited by J. of Mech. Eng., 2023, vol. 26, no. 3, pp. 6-14

 

Authors

Andrii V. Rusanov, Anatolii Pidhornyi Institute of Mechanical Engineering Problems of NAS of Ukraine (2/10, Pozharskyi str., Kharkiv, 61046, Ukraine), e-mail: rusanov@ipmach.kharkov.ua, ORCID: 0000-0002-9957-8974

Valerii S. Fedoreiko, Ternopil Volodymyr Hnatyuk National Pedagogical University (2, Maxyma Kryvonosa str., Ternopil, 46027, Ukraine), e-mail: kaf_mki@tnpu.edu.ua, ORCID: 0000-0001-5822-3002

Dariusz Kardaś, Institute of Fluid Flow Machinery Polish Academy of Sciences (14, Fiszera str., Gdańsk, 80-231, Poland), e-mail: dariusz.kardas@imp.gda.pl, ORCID: 0000-0001-6995-1857

Andrii O. Kostikov, Anatolii Pidhornyi Institute of Mechanical Engineering Problems of NAS of Ukraine (2/10, Pozharskyi str., Kharkiv, 61046, Ukraine), e-mail: kostikov@ipmach.kharkov.ua, ORCID: https://orcid.org/0000-0001-6076-1942

Viktoriia O. Tarasova, Anatolii Pidhornyi Institute of Mechanical Engineering Problems of NAS of Ukraine (2/10, Pozharskyi str., Kharkiv, 61046, Ukraine), e-mail: vat523710@gmail.com, ORCID: 0000-0003-3252-7619

Roman A. Rusanov, Anatolii Pidhornyi Institute of Mechanical Engineering Problems of NAS of Ukraine (2/10, Pozharskyi str., Kharkiv, 61046, Ukraine), e-mail: roman_rusanov@ipmach.kharkov.ua, ORCID: 0000-0003-2930-2574

Maryna O. Chuhai, Anatolii Pidhornyi Institute of Mechanical Engineering Problems of NAS of Ukraine (2/10, Pozharskyi str., Kharkiv, 61046, Ukraine), e-mail: mchugay@ipmach.kharkov.ua, ORCID: 0000-0002-0696-4527

Mykhailo I. Sukhanov, Anatolii Pidhornyi Institute of Mechanical Engineering Problems of NAS of Ukraine (2/10, Pozharskyi str., Kharkiv, 61046, Ukraine), ORCID: 0000-0002-3029-7111

Serhii P. Tretiak, Anatolii Pidhornyi Institute of Mechanical Engineering Problems of NAS of Ukraine (2/10, Pozharskyi str., Kharkiv, 61046, Ukraine), e-mail: s.tretiak@ipmach.kharkov.ua, ORCID: 0009-0008-1265-4227

 

Abstract

The thermal scheme of a power generating plant with a remote heat exchanger operating according to the Brayton cycle with energy recuperation is considered. It is assumed that the plant will work on non-certified (cheap) biofuel. It is shown that, in contrast to the usual Brayton cycle, in the cycle with energy recuperation, the greatest influence on the thermal efficiency is the heating temperature of the working medium and the internal efficiency of the main components of the plant, such as the compressor and the turbine. Also, in contrast to the usual Brayton cycle, a higher efficiency of the plant is achieved with smaller degrees of pressure reduction (increase) in the turbine (compressor). It was established that even at a relatively low temperature of the working medium heating (500 ºC), with high efficiency of the compressor and turbine, it is possible to achieve good characteristics of the power plant as a whole. At a temperature of up to 850 ºC, a thermal efficiency of 40% is achieved, but in this case the cost of materials and production increases. For a final conclusion about the possibility of using the proposed plant and its efficiency, it is necessary to conduct additional studies, in particular, of its main elements, such as a compressor, turbine, heat exchanger and others.

 

Keywords: thermal scheme, power generating plant, Brayton cycle, energy recuperation, thermal efficiency, turbine, compressor, efficiency.

 

Full text: Download in PDF

 

References

  1. (2020). Yevropeiskyi zelenyi kurs: mozhlyvosti ta zahrozy dlia Ukrainy [The European green course: Opportunities and threats for Ukraine]: Analytical document. Resource and Analytical Center “Society and Environment”, 74 p. (in Ukrainian). https://dixigroup.org/storage/files/2020-05-26/european-green-dealwebfinal.pdf.
  2. Tian, X., An, C., & Chen, Z. (2023). The role of clean energy in achieving decarbonization of electricity generation, transportation, and heating sectors by 2050: A meta-analysis review. Renewable and Sustainable Energy Reviews, v182, article no. 113404. https://doi.org/10.1016/j.rser.2023.113404.
  3. Kudria, O. (ed.) (2020). Vidnovliuvani dzherela enerhii [Renewable energy sources]. Kyiv: Institute of Renewable energy of the National Academy of Sciences of Ukraine, 392 p. (in Ukrainian).
  4. Jones, D. (2023). European Electricity Review 2023: EMBER-climate: official site. https://ember-climate.org/insights/research/european-electricity-review-2023/#supporting-material-downloads.
  5. Naraievskyi, V. (2019). Porivnialnyi analiz efektyvnosti roboty soniachnoi ta vitrovoi enerhetyky na svitovomu rynku [Comparative analysis of the efficiency of solar and wind energy on the world market]. Ekonomika ta derzhavaEconomy and the state, no. 5, pp. 33–38 (in Ukrainian). https://doi.org/10.32702/2306-6806.2019.5.33.
  6. (2023). Renewable capacity statistics 2023: International Renewable Energy Agency (IRENA): official site. 69 p. https://www.irena.org/Publications/2023/Mar/Renewable-capacity-statistics-2023.
  7. Rahman F. (2023). Hydropower capacity should more than double by 2050 to meet climate goals, Irena says. The National News: E-paper. https://www.thenationalnews.com/business/energy/2023/02/14/hydropower-capacity-should-more-than-double-by-2050-to-meet-climate-goals-irena-says/.
  8. Sukhodolia, O. M.(ed.), Kharazishvili, Yu. M., Bobro, D. H., Smenkovskyi, A. Yu., Riabtsev, H. L., Zavhorodnia, S. P. (2020). Enerhetychna bezpeka Ukrainy: metodolohiia systemnoho analizu ta stratehichnoho planuvannia [Energy security of Ukraine: methodology of system analysis and strategic planning]: Aanalytical report. Kyiv: NISD, 178 p. (in Ukrainian).
  9. Fernández-Arias, P., Vergara, D., & Antón-Sancho, Á. (2023). Bibliometric review and technical summary of PWR small modular reactors. Energies, v16, iss. 13, paper 5168. https://doi.org/10.3390/en16135168.
  10. Kudria, S. O. (2015). Stan ta perspektyvy rozvytku vidnovliuvanoi enerhetyky v Ukraini [The state and prospects of the development of renewable energy in Ukraine]. Visnyk Natsionalnoi akademii nauk UkrainyVisnyk of the National Academy of Sciences of Ukraine, no. 12, pp. 19–26 (in Ukrainian). https://doi.org/15407/visn2015.12.100.
  11. Jayakumar M., Gebeyehu K. B., Deso Abo L., Wondimu Tadesse A., Vivekanandan B., Sundramurthy V. P., Bacha W., Ashokkumar V., & Baskar G. (2023). A comprehensive outlook on topical processing methods for biofuel production and its thermal applications: Current advances, sustainability and challenges. Fuel, v349, article no.128690. https://doi.org/10.1016/j.fuel.2023.128690.
  12. Heletukha, H., Kucheruk, P.P., & Matvieiev, Yu. B. (2022). Perspektyvy vyrobnytstva biometanu v Ukraini [Prospects for biomethane production in Ukraine]. Analitychna zapyska UABIO – Analytical note UABIO, no. 29 (in Ukrainian). https://uabio.org/wp-content/uploads/2022/09/UA-Position-paper-UABIO-29.pdf.
  13. Kaletnik, M. & Pryshliak, N.V. (2021). Rozvytok haluzi biopalyva yak determinanta ctaloho rozvytku Ukrainy [Development of the biofuel industry as a determinant of sustainable development of Ukraine]. Ekonomika APKEconomy of Agro-Industrial Complex, no. 2, pp. 71–81 (in Ukrainian). https://doi.org/10.32317/2221-1055.202102071.
  14. Fedoreiko,  (ed.), Horbatiuk, R., Iskerskyi, I., Rutylo, M., Bureha, N., & Zahorodnii, R. (2022). Tekhnolohii bioresursnoi dyversyfikatsii dzherel enerhii na bazi heneratorivutylizatoriv [Technologies of bioresource diversification of energy sources based on generators and utilizers]. Ternopil: Pidruchnyky i posibnyky, 300 p. (in Ukrainian).
  15. Singh, A. K., Pal, P., Rathore, S. S., Sahoo, U. K., Sarangi, P. K., Prus, P., & Dziekański, P. (2023). Sustainable utilization of biowaste resources for biogas production to meet rural bioenergy requirements. Energies, v16, iss. 14, article no.5409. https://doi.org/10.3390/en16145409.
  16. Maliarenko, V. A., Shubenko, O. L., Andrieiev, S. Yu., Babak, M. Yu., & Senetskyi, O. V. (2018). Koheneratsiini tekhnolohii v malii enerhetytsi [Cogeneration technologies in small energy]. Kharkiv: O. M. Beketov National University of Urban Economy in Kharkiv, 454 p. (in Ukrainian).
  17. Rusanov, A., Shubenko, A., Senetskyi, O., Babenko, O., & Rusanov, R. (2019). Heating modes and design optimization of cogeneration steam turbines of powerful units of combined heat and power plant. Energetika, v65, no. 1, pp. 39–50. https://doi.org/10.6001/energetika.v65i1.3974.
  18. Rusanov, A., Rusanov, R., Klonowicz, P., Lampart, P., Żywica, G., & Borsukiewicz, A. (2021). Development and experimental validation of real fluid models for CFD calculation of ORC and steam turbine flow. Materials, v14, iss. 22, paper 6879. https://doi.org/10.3390/ma14226879.
  19. Rusanov, R., Szymaniak, M., Rusanov, A., & Lampart, P. (2017). Development of the 500 kW and 1 MW ORC turbine flow parts. Journal of Mechanical Engineering – Problemy Mashynobuduvannia, v20, no. 3, pp. 12–19. https://doi.org/10.15407/pmach2017.03.012.
  20. Rusanov, A. V., Kostikov, A. O., Shubenko, O. L., Kharlampidi, D. Kh., Tarasova, V. O., Senetskyi, O. V. (2019). Highly efficient cogeneration power plant with deep regeneration based on air Brayton cycleimpellers. Journal of Mechanical Engineering – Problemy Mashynobuduvannia, v22, no. 4, pp. 12–23. https://doi.org/10.15407/pmach2019.04.012.
  21. Kostikov, A., Tarasova, V., Kuznetsov, M., Satayev, M., & Kharlampidi, D. (2021). Thermoeconomical optimization of a regenerative air turbine cogeneration system. Journal of Thermal Engineering, v7, iss. 7, pp. 1719–1730. https://doi.org/10.18186/thermal.1025958.
  22. Rusanov, A., Lampart, P., Rusanov, R., & Bykuc, S. (2013). Elaboration of the flow system for a cogeneration ORC turbine. Proceedings of 12th Conference on Power System Engineering, Thermodynamics & Fluid Flow – ES 2013, Czech Republic, Pilzen, 13–14 June 2013. University of West Bohemia, 10
  23. Rusanov, A., Rusanov, R., & Lampart, P. (2015). Designing and updating the flow part of axial and radial-axial turbines through mathematical modeling. Open Engineering,5, iss. 1, pp. 399–410. https://doi.org/10.1515/eng-2015-0047.
  24. Shvets, I. T. & Kirakovskyi, N. F. (1977). Zahalna teplotekhnika ta teplovi dvyhuny [General heat engineering and heat engines]. Kyiv: Vyshcha shkola, 269 p. (in Ukrainian).
  25. Cengel, Y. A. & Boles, M. A. (2002). Thermodynamics: an engineering approach. Boston: McGraw-Hill, 452 p.

 

Received 25 August 2023

Published 30 September 2023