Експериментальний аналіз вимушених нелінійних коливань стрижнів з поперечними дихаючими тріщинами

image_print
DOI https://doi.org/10.15407/pmach2017.02.036
Журнал Проблеми машинобудування
Видавець Інститут проблем машинобудування ім. А. М. Підгорного Національної академії наук України
ISSN 0131-2928 (print), 2411-0779 (online)
Випуск Том 20, № 2, 2017 (червень)
Сторінки 36–42

 

Автори

О. Ф. Поліщук, Інститут проблем машинобудування ім. А. М. Підгорного НАН України (61046, Україна, м. Харків, вул. Пожарського, 2/10), e-mail: polishchuk@ipmach.kharkov.ua

К. В. Аврамов, Інститут проблем машинобудування ім. А. М. Підгорного НАН України (61046, Україна, м. Харків, вул. Пожарського, 2/10), e-mail: kvavramov@gmail.com, ORCID: 0000-0002-8740-693X

К. Б. Мягкохліб, Інститут проблем машинобудування ім. А. М. Підгорного НАН України (61046, Україна, м. Харків, вул. Пожарського, 2/10), e-mail: mkb@ipmach.kharkov.ua

 

Анотація

Експериментально досліджуються вимушені коливання стрижнів з поперечними тріщинами великої глибини, що дихають. Коливання стрижнів збуджуються кінематичним рухом закладення, що відтворюється за допомогою вібростенда. Результати аналізу коливань зображені на амплітудно-частотній характеристиці. Аналізуються Фур’є спектри періодичних коливань. Досліджуються області багатозначності коливань.

 

Ключові слова: вимушені нелінійні коливання, стрижень, тріщина

 

Література

  1. Bovsunovsky, A. & Surace, C. (2015). Non-linearities in the vibrations of elastic structures with a closing crack: A state of the art review. Mech. Systems and Signal Proc., no. 10, pp. 129–148. https://doi.org/10.1016/j.ymssp.2015.01.021
  2. Bovsunovskii, A. P. & Bovsunovskii, O. A. (2010). Application of non-linear resonances for the diagnostics of closing cracks in rod like elements. Strength of Materials, no. 42 (3), pp. 331–343. https://doi.org/10.1007/s11223-010-9222-4
  3. Andreaus, U. & Baragatti, P. (2012). Experimental damage detection of cracked beams by using non-linear characteristics of forced response. Mech. Syst. Sig. Process, no. 31, pp. 382–404. https://doi.org/10.1016/j.ymssp.2012.04.007
  4. Andreaus, U. & Baragatti, P. (2009). Fatigue crack growth, free vibrations, and breathing crack detection of aluminium alloy and steel beams. J. Strain Analysis, vol. 44, pp. 595–608. https://doi.org/10.1243/03093247JSA527
  5. Bovsunovsky, A. P. (2004). The mechanisms of energy dissipation in the non-propagating fatigue cracks in metallic materials. Eng. Fracture Mech., vol. 71, pp. 2271–2281. https://doi.org/10.1016/j.engfracmech.2004.02.003
  6. Zhang, W. & Testa, R. (1999). Closure effects on fatigue crack detection. J. Eng. Mech., no. 125(10), pp. 1125–1132. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:10(1125)
  7. Ledonard, F., Lanteigne, J., Lalonde, S., & Turcotte, Y. (2001). Free-vibration behavior of a cracked cantilever beam and crack detection. Mech. Systems and Signal Proc., no. 15(3), pp. 529–548. https://doi.org/10.1006/mssp.2000.1337
  8. Chondros, T.G. (2001). The continuous crack flexibility model for crack identification. Fatigue Fracture Eng. Material Structure, vol. 24, pp. 643‑650. https://doi.org/10.1046/j.1460-2695.2001.00442.x
  9. Montalvao E Silva, J. M. & Araujo Gomes, A. J. M. (1990). Experimental dynamic analysis of cracked free-free beams. Experimental Mech., vol. 30, pp. 20–25. https://doi.org/10.1007/BF02322697
  10. Gudmundson, P. (1983). The dynamic of slender structures with cross- sectional crack. J. Mech. and Physics of Solids, vol. 31, no.4, pp. 329–345. https://doi.org/10.1016/0022-5096(83)90003-0
  11. Peng, Z. K., Lang, Z. Q., & Billings, S. A. (2007). Crack detection using nonlinear output frequency response functions. J. Sound and Vibration, vol. 301, pp. 777–788. https://doi.org/10.1016/j.jsv.2006.10.039
  12. Dimarogonas, A. D. (1996). Vibration of cracked structures: a state of the art review. Engin. Fracture Mech., vol. 55, no.5, pp. 831–857. https://doi.org/10.1016/0013-7944(94)00175-8

 

Надійшла до редакції 23 березня 2017 р.