COMPUTATIONAL AND EXPERIMENTAL STUDY OF THE THERMODYNAMIC EFFICIENCY OF HEAT PUMPS

image_print
DOI  https://doi.org/10.15407/pmach2016.01.013
Journal Journal of Mechanical Engineering – Problemy Mashynobuduvannia
Publisher A. Podgorny Institute for Mechanical Engineering Problems
National Academy of Science of Ukraine
ISSN 0131-2928 (Print), 2411-0779 (Online)
Issue Vol. 19, no. 1, 2016 (March)
Pages 13-20
Cited by J. of Mech. Eng., 2016, vol. 19, no. 1, pp. 13-20

 

Authors

V. A. Tarasova,  A. Podgorny Institute of Mechanical Engineering Problems of NASU (2/10, Pozharsky Str., Kharkiv, 61046, Ukraine), e-mail: tarasova@ipmach.kharkov.ua, ORCID: 0000-0003-3252-7619

 

Abstract

A new technique for testing the thermodynamic efficiency of a heat pump is proposed, which allows us to estimate the energy intensity of the generated heat using a limited number of the parameters measured. Using the Gordon – Nju entropy-statistical approach, a semi-empirical thermodynamic model has been formed, which allows to take into account the real value of internal energy dissipation in a cycle and evaluate the efficiency of the heat pump operating at partial load. A software package has been developed for processing the results of monitoring the heat pump system for heat and cold supply of an administrative building in real time. According to the results of testing the VMN430L heat pump operation, it has been revealed that it operates in the partial load mode (80%). This leads to an increase in losses from cycle irreversibility by 7.3 ÷ 10% compared with the full load mode.

 

Keywords: heat pump, thermodynamic effectiveness, monitoring, exergy conversion coefficient

 

References

  1. Klepanda, A. S., Tarasova, V. A., & Berezhko, J. V. (2014). The method of monitoring thermodynamic efficiency of the heat pump. East European Journal of advanced technologies, no. 2/8 (68), pp. 3–8. https://doi.org/10.15587/1729-4061.2014.23086
  2. Brodyansky, V. M. (2011). Dostupnaja energija Zemli i ystojchivoe razvitie system zhizneobespechenija. 2. Resursi Zemli. gazi, no. 3, pp. 48–63.
  3. Matsevytiy, Y. M., Bratuta, E. G., Kharlampidy, D. Kh., & Tarasova, V. A. (2014). Sistemno-strukturniy analiz parokompressornih termotransformatorov. Kharkov: Podgorny Institute of Mechanical Engineering Problems of NASU, 269 p.
  4. Adam, W. & James, E. (2008). Fault Detection and Diagnostics for Commercial Coolers and Freezers. Herrick Laboratories, School of Mechanical Engineering, Purdue University, West Lafayette, USA, July 14-17, pp. 1–10.
  5. Nooman, A. M., Miller, N. R., & Bullard, C. W. (1999). Fault Detection and Diagnosis in Air Conditioners and Refrigerators. Air Conditioning and Refrigeration Center University of Illinois Mechanical & Industrial Engineering Dept. pp. 101.
  6. Grimmelius, H. T., Woud, J. K., & Been, G. (1995). On-line failure diagnosis for compression refrigeration plants. J. Refrigeration, vol. 18, pp. 31–41. https://doi.org/10.1016/0140-7007(94)P3709-A
  7. Rossi, T. M. & Braun, J. E. (1997). A statistical rule-based fault detection and diagnostic method for vapor compression air conditioners. HVAC&R Research, vol. 3, pp. 19–37. https://doi.org/10.1080/10789669.1997.10391359
  8. Li, H. & Braun, J. E. (2007). A Methodology for Diagnosing Multiple Simultaneous Faults in Vapor-Compression Air Conditioners. HVAC&R Research, vol. 13, pp. 369–395. https://doi.org/10.1080/10789669.2007.10390959
  9. Piacentino, A. & Talamo, M. (2013). Critical analysis of conventional thermoeconomic approaches to the diagnosis of multiple faults in air conditioning units: capabilities, drawbacks and improvement directions. A case study for an air-cooled system with 120 kW capacity. International Journal of Refrigeration, vol. 36, no. 1, pp. 24–44. https://doi.org/10.1016/j.ijrefrig.2012.09.014
  10. Gordon, J. M. & Ng, K. S. (1994). Thermodynamic Modeling of Reciprocating Chillers. J Appl. Phys., vol. 75, pp. 2769–2779. https://doi.org/10.1063/1.356215
  11. Gordon, J. M., Ng, K. S., & Chua, H. T. (1995). Centrifugal chillers: Thermodynamic modeling and diagnostics case study. International Journal of Refrigeration, vol. 18, no. 4, pp. 253–257. https://doi.org/10.1016/0140-7007(95)96863-2
  12. Gordon, J. M. & Ng, K. C. (2001). Cool Thermodynamics. The Engineering and Physics of Predictive, Diagnostic and Optimization Methods for Cooling Systems. Cornwall, England: MPG Books Ltd, 276 p.
  13. Andronov, A. M., Kopytov, Ye. A., & Gringlaz, L. Y. (2004). The theory of probability and mathematical statistics. Petersburg: Piter, 461 p.
  14. Ust, Y., Akkaya, A. V., & Safa, A. (2011). Analysis of a vapor compression refrigeration system via exergetic performance coefficient criterion. Energy Inst., vol. 84(2), pp. 66–72. https://doi.org/10.1179/014426011X12968328625351
  15. Herbas, T. B., Berlinck, E. C., Uriu, C. A., Marques, R. P., & Parise, J. A. R. (1993). Steady-State Simulation of Vapor-Compression Heat Pump. J. Ener. Res., vol. 17, pp. 801–816. https://doi.org/10.1002/er.4440170903

 

Received 01 March 2016

Published 30 March 2016