EXPERIMENTAL ANALYSIS OF FORCED NON-LINEAR OSCILLATIONS OF RODS WITH TRANSVERSE BREATHING CRACKS

image_print
DOI https://doi.org/10.15407/pmach2017.02.036
Journal Journal of Mechanical Engineering – Problemy Mashynobuduvannia
Publisher A. Podgorny Institute for Mechanical Engineering Problems
National Academy of Science of Ukraine
ISSN 0131-2928 (Print), 2411-0779 (Online)
Issue Vol. 20 no. 2, 2017 (June)
Pages 36-42
Cited by J. of Mech. Eng., 2017, vol. 20, no. 2, pp. 36-42

 

Authors

O. F. Polishchuk, A. Podgorny Institute of Mechanical Engineering Problems of NASU (2/10, Pozharsky St., Kharkiv, 61046, Ukraine), e-mail: polishchuk@ipmach.kharkov.ua

K. V. Avramov, A. Podgorny Institute of Mechanical Engineering Problems of NASU (2/10, Pozharsky St., Kharkiv, 61046, Ukraine), e-mail: kvavramov@gmail.com, ORCID: 0000-0002-8740-693X

K. B. Myagkokhleb, A. Podgorny Institute of Mechanical Engineering Problems of NASU (2/10, Pozharsky St., Kharkiv, 61046, Ukraine), e-mail: mkb@ipmach.kharkov.ua

 

Abstract

Forced oscillations of rods with transverse breathing cracks of great depth are experimentally investigated. The oscillations of the rods are excited by the kinematic embedding motion, which is reproduced using a vibrostand. The results of the analysis of oscillations are presented on the amplitude-frequency characteristics. The Fourier spectra of periodic oscillations are analyzed. Areas of polysemy of oscillations are investigated. Areas of polysemy of oscillations are investigated.

 

Keywords: forced non-linear oscillations, rod, crack

 

References

  1. Bovsunovsky, A. & Surace, C. (2015). Non-linearities in the vibrations of elastic structures with a closing crack: A state of the art review. Mech. Systems and Signal Proc., no. 10, pp. 129–148. https://doi.org/10.1016/j.ymssp.2015.01.021
  2. Bovsunovskii, A. P. & Bovsunovskii, O. A. (2010). Application of non-linear resonances for the diagnostics of closing cracks in rod like elements. Strength of Materials, no. 42 (3), pp. 331–343. https://doi.org/10.1007/s11223-010-9222-4
  3. Andreaus, U. & Baragatti, P. (2012). Experimental damage detection of cracked beams by using non-linear characteristics of forced response. Mech. Syst. Sig. Process, no. 31, pp. 382–404. https://doi.org/10.1016/j.ymssp.2012.04.007
  4. Andreaus, U. & Baragatti, P. (2009). Fatigue crack growth, free vibrations, and breathing crack detection of aluminium alloy and steel beams. J. Strain Analysis, vol. 44, pp. 595–608. https://doi.org/10.1243/03093247JSA527
  5. Bovsunovsky, A. P. (2004). The mechanisms of energy dissipation in the non-propagating fatigue cracks in metallic materials. Eng. Fracture Mech., vol. 71, pp. 2271–2281. https://doi.org/10.1016/j.engfracmech.2004.02.003
  6. Zhang, W. & Testa, R. (1999). Closure effects on fatigue crack detection. J. Eng. Mech., no. 125(10), pp. 1125–1132. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:10(1125)
  7. Ledonard, F., Lanteigne, J., Lalonde, S., & Turcotte, Y. (2001). Free-vibration behavior of a cracked cantilever beam and crack detection. Mech. Systems and Signal Proc., no. 15(3), pp. 529–548. https://doi.org/10.1006/mssp.2000.1337
  8. Chondros, T.G. (2001). The continuous crack flexibility model for crack identification. Fatigue Fracture Eng. Material Structure, vol. 24, pp. 643‑650. https://doi.org/10.1046/j.1460-2695.2001.00442.x
  9. Montalvao E Silva, J. M. & Araujo Gomes, A. J. M. (1990). Experimental dynamic analysis of cracked free-free beams. Experimental Mech., vol. 30, pp. 20–25. https://doi.org/10.1007/BF02322697
  10. Gudmundson, P. (1983). The dynamic of slender structures with cross- sectional crack. J. Mech. and Physics of Solids, vol. 31, no.4, pp. 329–345. https://doi.org/10.1016/0022-5096(83)90003-0
  11. Peng, Z. K., Lang, Z. Q., & Billings, S. A. (2007). Crack detection using nonlinear output frequency response functions. J. Sound and Vibration, vol. 301, pp. 777–788. https://doi.org/10.1016/j.jsv.2006.10.039
  12. Dimarogonas, A. D. (1996). Vibration of cracked structures: a state of the art review. Engin. Fracture Mech., vol. 55, no.5, pp. 831–857. https://doi.org/10.1016/0013-7944(94)00175-8

 

Received 23 March 2017

Published 30 June 2017