Ways of TPP Power Units Modernization During Their Conversion to Ultra-Supercritical Steam Parameters

image_print
DOI https://doi.org/10.15407/pmach2023.04.006
Journal Journal of Mechanical Engineering – Problemy Mashynobuduvannia
Publisher Anatolii Pidhornyi Institute for Mechanical Engineering Problems
National Academy of Science of Ukraine
ISSN  2709-2984 (Print), 2709-2992 (Online)
Issue Vol. 26, no. 4, 2023 (December)
Pages 6-16
Cited by J. of Mech. Eng., 2023, vol. 26, no. 4, pp. 6-16

 

Authors

Andrii O. Kostikov, Anatolii Pidhornyi Institute of Mechanical Engineering Problems of NAS of Ukraine (2/10, Pozharskyi str., Kharkiv, 61046, Ukraine), e-mail: kostikov@ipmach.kharkov.ua, ORCID: 0000-0001-6076-1942

Oleksandr L. Shubenko, Anatolii Pidhornyi Institute of Mechanical Engineering Problems of NAS of Ukraine (2/10, Pozharskyi str., Kharkiv, 61046, Ukraine), e-mail: shuben@ipmach.kharkov.ua, ORCID: 0000-0001-9014-1357

Viktoriia O. Tarasova, Anatolii Pidhornyi Institute of Mechanical Engineering Problems of NAS of Ukraine (2/10, Pozharskyi str., Kharkiv, 61046, Ukraine), e-mail: vat523710@gmail.com, ORCID: 0000-0003-3252-7619

Viktor A. Yakovliev, Anatolii Pidhornyi Institute of Mechanical Engineering Problems of NAS of Ukraine (2/10, Pozharskyi str., Kharkiv, 61046, Ukraine), e-mail: yava@ipmach.kharkov.ua, ORCID: 0000-0002-6174-3022

Andrii O. Mazur, Anatolii Pidhornyi Institute of Mechanical Engineering Problems of NAS of Ukraine (2/10, Pozharskyi str., Kharkiv, 61046, Ukraine), e-mail: drussmazur@gmail.com, ORCID: 0000-0003-2864-4943

 

Abstract

The approach to solving the applied problem of modernization of the 300 MW series power units produced by JSC “Ukrainian Energy Machines” by converting them from supercritical to ultra-supercritical steam parameters, provided that regenerative feed water heating system is preserved as much as possible, which will lead to an increase in the energy efficiency of the TPP with minimal conversion, is analyzed in the paper. The conversion of the K-300-240-2 power unit to the parameters of fresh steam 650 °C/30 MPa and intermediate superheated steam 650 °C/7 MPa, determined as optimal as a result of previous studies, can be carried out by completely replacing the high-pressure cylinder of the existing unit for a new high-pressure cylinder with ultra-supercritical steam parameters and superstructure with an additional intermediate-pressure cylinder while fully preserving the parameters and designs of the intermediate- and low-pressure output parts. Two options for modernization of the 300 MW series power unit thermal circuit structure were considered, and the scale of conversion of the regenerative feed water heating system was evaluated. In the first option of the thermal scheme, the 1st steam selection is organized from the cold threads of the modernized high-pressure cylinder with ultra-supercritical steam parameters, and the 2nd one – from the cold threads of the additional intermediate-pressure cylinder. In this case, two high-pressure heaters and a turbo drive of the feed pump are subject to replacement. The disadvantage of this option is that due to a significant increase in steam parameters, it is impossible to choose high-pressure heaters from the existing model range, and a new design must be developed. The electrical efficiency for this modernization option increases from 36.5% (the initial thermal circuit of the K-300-240-2 turbine) to 42.5%. In the second option, it is proposed to install an additional turbine with a capacity of 3 MW, to the input of which a steam from cold threads of the high-pressure cylinder with ultra-supercritical steam parameters is supplied with a loss equal to the sum of the 1st and 2nd selections of the original version of the turbine, on the same shaft with a turbo drive of the feed pump for the sake of preserving the existing high-pressure heater. The steam from the additional turbine selections goes to high-pressure heaters HPH9 and HPH8 with parameters corresponding to the output data of the existing turbine. Taking this into account, high-pressure heaters will not be replaceable. In addition, the power of the additional turbine is sufficient to ensure the operation of the feed pump together with the turbo drive of the feed pump to obtain a water pressure of 34 MPa. In view of this, the turbo drive of the feed pump also remains unchanged, except for the additional turbine installation. The electrical efficiency for the second option of the modernization scheme of the K-300-240-2 power unit is 42.4%. It was determined that the payback period of the modernization according to the first option is 5 years, taking into account the modernization of the boiler unit, and according to the second one – 4.5 years. It is proposed to choose the option of the thermal scheme with an additional turbine, since in this case it is possible to modernize the K-300-240-2 power unit with the maximum possible preservation of the regenerative feed water heating system while increasing its energy efficiency by almost 14%.

 

Keywords: ultra-supercritical steam parameters, thermal power plant, energy efficiency, regenerative feed water heating system.

 

Full text: Download in PDF

 

References

  1. Kostikov, A. O., Shubenko, O. L., Subotin, V. H., Senetskyi, O. V., Tarasova, V. O., Holoshchapov, V. M., & Babak, M. Yu. (2021). Principal modernization solutions for a 300 MW power unit to be converted to operate at ultra-supercritical steam parameters. Journal of Mechanical Engineering – Problemy Mashynobuduvannia, vol. 24, no. 4, pp. 38–49. https://doi.org/10.15407/pmach2021.04.038.
  2. Shubenko, A., Babak, M., Senetskyi, O., Tarasova, V., Goloshchapov, V., & Senetska, D. (2022). Economic assessment of the modernization perspectives of a steam turbine power unit to the ultra-supercritical operation conditions. International Journal of Energy Research, vol. 46, iss. 15, pp. 25530–25537. https://doi.org/10.1002/er.8650.
  3. Tarasova, V., Kostikov, A., & Kuznetsov, M. (2023). Thermodynamic analysis and optimization of the cycle of a CHP plant power unit operating with ultra-supercritical steam parameters. In: Altenbach H., et al. Advances in Mechanical and Power Engineering. CAMPE 2021. Lecture Notes in Mechanical Engineering. Cham: Springer, pp. 44–54. https://doi.org/10.1007/978-3-031-18487-1_5.
  4. Tumanovskii, A. G., Shvarts, A. L., Somova, E. V., Verbovetskii, E. Kh., Avrutskii, G. D., Ermakova, S. V., Kalugin, R. N., & Lazarev, M. V. (2017). Review of the coal-fired, over-supercritical and ultra-supercritical steam power plants. Thermal Engineering, vol. 64, pp. 83–96. https://doi.org/10.1134/S0040601517020082.
  5. Mohamed, O., Khalil, A., & Wang, J. (2020). Modeling and control of supercritical and ultra-supercritical power plants: A review. Energies, vol. 13, iss. 11, paper ID 2935. https://doi.org/10.3390/en13112935.
  6. Mohamed, O. (2012). Study of energy-efficient supercritical coal-fired power plant dynamic responses and control strategies: Ph.D. Thesis. University of Birmingham, Birmingham, UK.
  7. Draganescu, M. (2015). Study of supercritical coal-fired power plant dynamic responses and control for grid code compliance: Ph.D. Thesis. University of Warwick, Coventry, UK.
  8. Guo, S. (2015). Model based analysis of power plant integrated with a post combustion carbon capture process: Ph.D. Thesis. University of Warwick, Coventry, UK.
  9. Agbonghae, E. O. (2015). Modelling and optimization of coal-fired power plant generation systems with CO2 capture: Ph.D. Thesis. University of Leeds, Leeds, UK.
  10. Restrepo, A., Miyake, R., Kleveston, F., & Bazzo, E. (2012). Exergetic and environmental analysis of a pulverized coal power plant. Energy, vol. 45, iss. 1, pp. 195–202. https://doi.org/10.1016/j.energy.2012.01.080.
  11. Li, Y., Zhou, L., Xu, G., Fang, Y., Zhao, S. & Yang, Y. (2014). Thermodynamic analysis and optimization of a double reheat system in an ultra-supercritical power plant. Energy, vol. 74, pp. 202–214. https://doi.org/10.1016/j.energy.2014.05.057.
  12. Cui, J., Chai, T., & Liu, X. (2020). Deep-neural-network-based economic model predictive control for ultra-supercritical power plant. IEEE Transactions on Industrial Informatics, vol. 16, iss. 9, pp. 5905–5913. https://doi.org/10.1109/tii.2020.2973721.
  13. Adibhatla, S. & Kaushik, S. C. (2014). Energy and exergy analysis of a super critical thermal power plant at various load conditions under constant and pure sliding pressure operation. Applied Thermal Engineering, vol. 73, iss. 1, pp. 51–65. https://doi.org/10.1016/j.applthermaleng.2014.07.030.
  14. Ahmadi, Gh. R. & Toghraie, D. (2016). Energy and exergy analysis of Montazeri steam power plant in Iran. Renewable and Sustainable Energy Reviews, vol. 56, pp. 454–463. https://doi.org/10.1016/j.rser.2015.11.074.
  15. Tramošljika, B., Blecich, P., Bonefacic I., & Glažar, V. (2021). Advanced ultra-supercritical coal-fired power plant with post-combustion carbon capture: Analysis of electricity penalty and CO2 emission reduction. Sustainability, vol. 13, iss. 2, pp. 801–820. https://doi.org/10.3390/su13020801.
  16. Liebenthal, U., Linnenberg, S., Oexmann, J., & Kather, A. (2011). Derivation of correlations to evaluate the impact of retrofitted post-combustion CO2 capture processes on steam power plant performance. International Journal of Greenhouse Gas Control, vol. 5, iss. 5, pp. 1232–1239. https://doi.org/10.1016/j.ijggc.2011.05.033.
  17. Kowalczyk, T., Ziółkowski, P., & Badur, J. (2015). Exergy analysis of the Szewalski cycle with a waste heat recovery system. Archives of Thermodynamics, vol. 36, no. 3, pp. 25–48. https://doi.org/10.1515/aoter-2015-0020.
  18. Espatolero, S., Cortés, C., & Romeo, L. M. (2010). Optimization of boiler cold-end and integration with the steam cycle in supercritical units. Applied Energy, vol. 87, iss. 5, pp. 1651–1660. https://doi.org/10.1016/j.apenergy.2009.10.008.
  19. Liu ,X. J., Kong, X. B., Hou, G. L., & Wang, J. H. (2013). Modeling of a 1000 MW power plant ultra super-critical boiler system using fuzzy-neural network methods. Energy Conversion and Management, vol. 65, pp. 518–527. https://doi.org/10.1016/j.enconman.2012.07.028.
  20. Zhang, H., Liu, X., Kong, X., & Lee, K. Y. (2019). Stacked auto-encoder modeling of an ultra-supercritical boiler-turbine system. Energies, vol. 12, iss. 21, paper ID 4035. https://doi.org/10.3390/en12214035.
  21. Łukowicz, H., Dykas, S., Rulik, S., & Stepczynska, K. (2011). Thermodynamic and economic analysis of a 900 MW ultra-supercritical power unit. Archives of Thermodynamics, vol. 32, no. 3, pp. 231–244. https://doi.org/10.2478/v10173-011-0025-1.
  22. Rayudu, P. N. & Govinda Rajulu, K. (2017). Technology thermodynamic analysis of 1200 MW coal based supercritical thermal power plant with single and double reheating. International Journal of Engineering Sciences & Research Technology, vol. 6, iss. 4, pp. 677–684.
  23. Sun, L., Li, D., Lee, K. Y., & Xue, Y. (2016). Control-oriented modeling and analysis of direct energy balance in coal-fired boiler-turbine unit. Control Engineering Practice, vol. 55, pp. 38–55. https://doi.org/10.1016/j.conengprac.2016.06.013.
  24. Tarasova, V. O. (2021). Faktornyi analiz teplovoi skhemy TETs z superkrytychnym parovym tsyklom na osnovi ekserhetychnoho metodu [Factor analysis of the thermal scheme of CHP with super critical steam cycle on the basis of exergy method]. Visnyk NTU «KhPI». Seriia: «Novi rishennia u suchasnykh tekhnolohiiakh» – Bulletin of the National Technical University “KhPI” Series: “New solutions in modern technologies”, no. 2 (8), pp. 46–55 (in Ukrainian). https://doi.org/10.20998/2413-4295.2021.02.07.
  25. Kosyak, Yu. F. (eds). (1982). Parovaya turbina K-300-240 KhTGZ [Steam turbine K-300-240 KhTGZ]. Moscow: Energoizdat, 272 p. (in Russian).
  26. Lykhvar, N. V., Govorushchenko, Yu. N., & Yakovlev, V. A. (2003). Modelirovaniye teploenergeticheskikh ustanovok s ispolzovaniyem interaktivnoy skhemnoy grafiki [Modeling of heat power plants using interactive circuit graphics]. Problemy mashinostroyeniyaJournal of Mechanical Engineering – Problemy Mashynobuduvannia, vol. 6, no. 1, pp. 30–41 (in Russian).

 

Received 19 June 2023

Published 30 December 2023