Strength of Composite Transport and Launch Container for Rocket Launch

image_print
DOI https://doi.org/10.15407/pmach2023.04.017
Journal Journal of Mechanical Engineering – Problemy Mashynobuduvannia
Publisher Anatolii Pidhornyi Institute for Mechanical Engineering Problems
National Academy of Science of Ukraine
ISSN  2709-2984 (Print), 2709-2992 (Online)
Issue Vol. 26, no. 4, 2023 (December)
Pages 17-22
Cited by J. of Mech. Eng., 2023, vol. 26, no. 4, pp. 17-22

 

Authors

Kostiantyn V. Avramov, Anatolii Pidhornyi Institute of Mechanical Engineering Problems of NAS of Ukraine (2/10, Pozharskyi str., Kharkiv, 61046, Ukraine), e-mail: kvavramov@gmail.com, ORCID: 0000-0002-8740-693X

Volodymyr M. Sirenko, Yuzhnoye State Design Office (3, Krivorizka St., Dnipro, 49008, Ukraine), e-mail: v.n.sirenko@i.ua, ORCID: 0000-0002-8152-2358

Volodymyr V. Zaverukha, Yuzhnoye State Design Office (3, Krivorizka St., Dnipro, 49008, Ukraine)

Sergiy I. Plankovskyy, O. M. Beketov National University of Urban Economy in Kharkiv (17, Marshal Bazhanov str., Kharkiv, 61002, Ukraine), e-mail: sergiy.plankovskyy@kname.edu.ua, ORCID: 0000-0003-2908-903X

Yevgen V. Tsegelnyk, O. M. Beketov National University of Urban Economy in Kharkiv (17, Marshal Bazhanov str., Kharkiv, 61002, Ukraine), e-mail: y.tsegelnyk@kname.edu.ua, ORCID: 0000-0003-1261-9890

Volodymyr V. Kombarov, O. M. Beketov National University of Urban Economy in Kharkiv (17, Marshal Bazhanov str., Kharkiv, 61002, Ukraine), ORCID: 0000-0002-6158-0374

 

Abstract

A transport and launch container for launching rockets made of fiberglass is considered. The main goal of the paper is to calculate the stress state of this container and check the strength conditions. The calculation of the pressures of the combustion products is carried out for several positions of the rocket nozzle in the container. Two cases are considered for the nozzle, which is located: in the middle of the container and at the outlet of the container. The maximum values of the pressure acting on the inner side of the container are observed when the rocket nozzle exits the container. The pressure field is axisymmetric. In view of this, to approximate the pressure field, it is decomposed into a Fourier series along the longitudinal coordinate of the rocket. The stress state of the container is also axisymmetric. In addition, it is also considered for two cases of the nozzle and the container configuration. The finite element method implemented in the ANSYS software complex was used to calculate the stress state. The highest stress values are observed when the nozzle exits the container. As it follows from the finite element calculations, circumferential stresses are the greatest. The strength limit of fiberglass is used to analyze the strength of the container. As can be seen from the calculations, the container meets the strength requirements with a large margin factor.

 

Keywords: aerodynamic load, stressed state, rocket launch, composite material.

 

Full text: Download in PDF

 

References

  1. Yang, J. & Wang, Z. (2012). Numerical simulation of launch tube based on container-type missile launch technology. Procedia Engineering, vol. 31, pp. 302–307. https://doi.org/10.1016/j.proeng.2012.01.1028.
  2. Samartseva, C. I., Boltyanskiy, I. M., & Kolga, V. V. (2020). Raschet transporno-puskovogo konteynera sistemy vozdushnogo starta rakety-nositelya [Calculation of the transport-launch container of the launch vehicle air launch system]. Aktualnyye problemy aviatsii i kosmonavtikiCurrent problems of aviation and astronautics, vol. 1, pp. 102–104 (in Russian).
  3. Peshkov, R. A. & Sidelnikov, R. V. (2015). Analiz udarno-volnovykh nagruzok na raketu, puskovuyu ustanovku i konteyner v protsesse starta [Analysis of shock wave loads on the rocket, launcher and container during the launch process]. Vestnik YuUrGU. Seriya «Mashinostroyeniye»Bulletin of the South Ural State University. Series “Mechanical Engineering Industry”, vol. 15, no. 2, pp. 81–91 (in Russian).
  4. Vavilova, M. I. & Kavun, N. S. (2014). Svoystva i osobennosti armiruyushchikh steklyannykh napolniteley, ispolzuyemykh dlya izgotovleniya konstruktsionnykh stekloplastikov [Properties and characteristics of reinforcing glass fillers used for the manufacture of structural fiberglass]. Aviatsionnyye materialy i tekhnologiiAviation Materials and Technologies, no. 3, pp. 33–37 (in Russian). https://doi.org/10.18577/2071-9140-2014-0-3-33-37.
  5. Davydov, I. F. & Kavun, N. S. (2012). Stekloplastiki – mnogofunktsionalnyye kompozitnyye materialy [Fiberglass – multifunctional composite materials]. Aviatsionnyye materialy i tekhnologiiAviation Materials and Technologies, no. S, pp. 253–260 (in Russian).
  6. Dogan, A. & Atas, C. (2015). Variation of the mechanical properties of E-glass/epoxy composites subjected to hygrothermal aging. Journal of Composite Materials, vol. 50, iss. 5, pp. 637–646. https://doi.org/10.1177/0021998315580451.
  7. Martynenko, V. G., Lvov, G. I., & Ulianov, Yu. N. (2019). Experimental investigation of anisotropic viscoelastic properties of glass fiber-reinforced polymeric composite material. Polymers and Polymer Composites, vol. 27, iss. 6, pp. 323–336. https://doi.org/10.1177/0967391119846362.

 

Received 08 November 2023

Published 30 December 2023