Behavior of Functionally Graded Porous Plate in Bending with Smoothed Element

image_print
DOI https://doi.org/10.15407/pmach2024.04.051
Journal Journal of Mechanical Engineering – Problemy Mashynobuduvannia
Publisher Anatolii Pidhornyi Institute of Power Machines and Systems
of National Academy of Science of Ukraine
ISSN  2709-2984 (Print), 2709-2992 (Online)
Issue Vol. 27, no. 4, 2024 (December)
Pages 51-58
Cited by J. of Mech. Eng., 2024, vol. 27, no. 4, pp. 51-58

 

Author

Lan Hoang Ton-That, University of Architecture Ho Chi Minh City (196 Pasteur, Vo Thi Sau Ward, District 3, Ho Chi Minh, Vietnam), e-mail: tonthathoanglan.247@gmail.com, ORCID: 0000-0002-3544-917X

 

Abstract

The bending analysis of functionally graded porous (FGP) plates using a four-node quadrilateral element connected to the C0-type of Reddy’s third-order shear deformation theory and cell-based smoothed strains is presented in this paper. Reddy’s theory surely uses the advantages and desirable properties of third-order shear deformation theory. Moreover, FGP plates with advanced material properties are changed from the bottom to the top surface, respectively. Numerical results and comparisons with other reference solutions indicate the accuracy and efficiency of the current element in the analysis of FGP plates.

 

Keywords: quadrilateral element, C0-HSDT, FGP material, smoothed strains.

 

Full text: Download in PDF

 

References

  1. Chen, D., Gao, K., Yang, J., & Zhang, L. (2023). Functionally graded porous structures: Analyses, performances, and applications – A Review. Thin-Walled Structures, vol. 191, article 111046. https://doi.org/10.1016/j.tws.2023.111046.
  2. Yin, Z., Gao, H., & Lin, G. (2021). Bending and free vibration analysis of functionally graded plates made of porous materials according to a novel the semi-analytical method. Engineering Analysis with Boundary Elements, vol. 133, pp. 185–199. https://doi.org/10.1016/j.enganabound.2021.09.006.
  3. Demirhan, P. A. & Taskin, V. (2019). Bending and free vibration analysis of Levy-type porous functionally graded plate using state space approach. Composites Part B: Engineering, vol. 160, pp. 661–676. https://doi.org/10.1016/j.compositesb.2018.12.020.
  4. Sun, X., Gao, R., & Zhang, Y. (2023). Spectral stochastic isogeometric analysis of bending and free vibration of porous functionally graded plates. Applied Mathematical Modelling, vol. 116, pp. 711–734. https://doi.org/10.1016/j.apm.2022.12.017.
  5. Ramteke, P. M., Mahapatra, B. P., Panda, S. K., & Sharma, N. (2020). Static deflection simulation study of 2D Functionally graded porous structure. Materials Today: Proceedings, vol. 33, part 8, pp. 5544–5547. https://doi.org/10.1016/j.matpr.2020.03.537.
  6. Merdaci, S. & Belghoul, H. (2019). High-order shear theory for static analysis of functionally graded plates with porosities. Comptes Rendus Mécanique, vol. 347, no. 3, pp. 207–217. https://doi.org/10.1016/j.crme.2019.01.001.
  7. Kumari, T., Som, R., Althobaiti, S., & Manna, S. (2023). Bending wave at the edge of a thermally affected functionally graded poroelastic plate. Thin-Walled Structures, vol. 186, article 110719. https://doi.org/10.1016/j.tws.2023.110719.
  8. Ton-That, H. L. (2023). Four-node quadrilateral C0-element based on cell-based smoothed strains strategy and third-order shear deformation theory for functionally graded carbon nanotube reinforced composite plates. Rakenteiden MekaniikkaJournal of Structural Mechanics, vol. 56, no. 1, pp. 1–23. https://doi.org/10.23998/rm.119608.
  9. Ton-That, H. L., Nguyen-Van, H., & Chau-Dinh, T. (2020). Static and buckling analyses of stiffened plate/shell structures using the quadrilateral element SQ4C. Comptes Rendus Mécanique, vol. 348, no. 4, pp. 285–305. https://doi.org/10.5802/crmeca.7.
  10. Nguyen-Van, H., Mai-Duy, N., Karunasena, W., & Tran-Cong, T. (2011). Buckling and vibration analysis of laminated composite plate/shell structures via a smoothed quadrilateral flat shell element with in-plane rotations. Computers & Structures, vol. 89, iss. 7–8, pp. 612–625. https://doi.org/10.1016/j.compstruc.2011.01.005.
  11. Reddy, J. N. (1984). A simple higher-order theory for laminated composite plates. Journal of Applied Mechanics, vol. 51, iss. 4, pp. 745–752. https://doi.org/10.1115/1.3167719.
  12. Phan, N. D. & Reddy, J. N. (1985). Analysis of laminated composite plates using a higher-order shear deformation theory. International Journal for Numerical Methods in Engineering, vol. 21, iss. 12, pp. 2201–2219. https://doi.org/10.1002/nme.1620211207.

 

Received 19 October 2024

Published 30 December 2024