Comprehensive Methodology for Turboexpander Units Flow Parts Designing

image_print
DOI https://doi.org/10.15407/pmach2025.01.006
Journal Journal of Mechanical Engineering – Problemy Mashynobuduvannia
Publisher Anatolii Pidhornyi Institute of Power Machines and Systems
of National Academy of Science of Ukraine
ISSN  2709-2984 (Print), 2709-2992 (Online)
Issue Vol. 28, no. 1, 2025 (March)
Pages 6-18
Cited by J. of Mech. Eng., 2025, vol. 28, no. 1, pp. 6-18

 

Authors

Roman A. Rusanov, Anatolii Pidhornyi Institute of Power Machines and Systems of NAS of Ukraine (2/10, Komunalnykiv str., Kharkiv, 61046, Ukraine), e-mail: roman_rusanov@ipmach.kharkov.ua, ORCID: 0000-0003-2930-2574

Sergiy V. Moiseiev, PrJSC “Turbogaz” (6/4, Troitskyi lane, Kharkiv, 61003, Ukraine), e-mail: svmh@ukr.net

Oleg V. Kuprygin, PrJSC “Turbogaz” (6/4, Troitskyi lane, Kharkiv, 61003, Ukraine), e-mail: turbogaz@ukr.net

Dmytro V. Kaliamin, PrJSC “Turbogaz” (6/4, Troitskyi lane, Kharkiv, 61003, Ukraine), e-mail: kdv777@gmail.com

Arkadii V. Burniashev, PrJSC “Turbogaz” (6/4, Troitskyi lane, Kharkiv, 61003, Ukraine), e-mail: arkadii8201@gmail.com

Maksym K. Novikov, PrJSC “Turbogaz” (6/4, Troitskyi lane, Kharkiv, 61003, Ukraine), e-mail: novikovmaxim1980@ukr.net

 

Abstract

The author’s comprehensive methodology for designing the flow parts of turboexpander units, the main elements of which are a centripetal turbine and a centrifugal compressor, is presented. The methodology includes mathematical methods and models of various levels of complexity, from one-dimensional to spatial ones, as well as experimental research. The calculation of three-dimensional viscous flow is performed using the method of numerical integration of the averaged Navier-Stokes equations and Menter’s differential turbulence model. The spatial shape of the turbine and compressor is described using the method for which the initial data is given as a limited number of parameterized values. An example of the developed flow part, which has high gas-dynamic efficiency in a wide range of operating modes and corresponds to the best world analogues in terms of its characteristics, is given. It is shown that the calculated gas-dynamic characteristics are in satisfactory agreement with the experimental data. A database of highly efficient flow parts of turbines and compressors, which are used as prototypes in the creation of new modern turboexpander units, has been created.

 

Keywords: turboexpander, gas pipeline, natural gas, turbo-compressor, flow part.

 

Full text: Download in PDF

 

References

  1. Boichenko, S., Dokshyna, S., Shkilniuk, I., Yakovlieva, A., Levandovskyi, I., Kuberskyi, I., & Zaporozhets, A. (2024). Increasing the level of energy security of Ukraine by reducing import dependence of oil products. In: Boichenko S., Zaporozhets A., Shkilniuk I., Yakovlieva A. (eds). Modern Technologies in Energy and Transport II. Studies in Systems. Decision and Control. Springer, Cham, vol. 574, pp. 67–77. https://doi.org/10.1007/978-3-031-76650-3_5.
  2. (2024). Monitorynh naftohazovydobuvnoho sektoru [Monitoring of the oil and gas sector]. Report for November 2024. Association of Gas Extracting Companies of Ukraine: official website (in Ukrainian). https://agpu.org.ua/analityka/monitorynh/monitorynh-naftohazovydobuvnoho-sektoru-3-9-11-2024.
  3. Wosu, C. O. (2024). Design and performance analysis of an industrial absorber for the dehydration of natural gas using triethylene glycol. Journal of Engineering Research Innovation and Scientific Development, vol. 2, no. 3, pp. 40–49. https://doi.org/10.61448/jerisd23245.
  4. Zhu, L., Wang, D., Liu, G., & Liu, H. (2022). Oiling low temperature separation process for dehydration and de-hydrocarbon of natural gas and practical application. Science and Technology for Energy Transition, vol. 77, article No. 8. https://doi.org/10.2516/stet/2022005.
  5. Rasi, S., Läntelä, J., & Rintala, J. (2014). Upgrading landfill gas using a high pressure water absorption process. Fuel, vol. 115, pp. 539–543. https://doi.org/10.1016/j.fuel.2013.07.082.
  6. Khurmamatov, A. M. & Auesbaev, A. U. (2023). Analysis of the operating mode of the existing desorber and its modernization using additional contact devices. Nafta-Gaz, no. 6, pp. 412–419. https://doi.org/10.18668/NG.2023.06.05.
  7. Aghai, R. (2003). Turboexpander technology evaluation and application in natural gas processing. Proceedings of Eighty-Second Gas Processing Association Annual Convention. San Antonio, Texas.
  8. Baccanelli, M., Langé, S., Rocco, M. V., Pellegrini, L. A., & Colombo, E. (2016). Low temperature techniques for natural gas purification and LNG production: An energy and exergy analysis. Applied Energy, vol. 180, pp. 546−559. https://doi.org/10.1016/j.apenergy.2016.07.119.
  9. Murodov, A., Xabibullaev, S., Maxmudov, N., Daminov, T., & Qarshiyev, A. (2023). Creation of technology for desalination of saturated diethylene glycol substance in East Berdak gas complex preparation plant. E3S Web of Conference, vol. 434, article No. 02026. https://doi.org/10.1051/e3sconf/202343402026.
  10. Chidiebere, O. O., Inyang, U. E., & Oboh, I. O. (2023). Modelling and optimization of natural gas dehydration system using triethylene glycol. Journal of Engineering Research and Reports, vol. 24, iss. 12, pp. 89−102. https://doi.org/10.9734/jerr/2023/v24i12862.
  11. Orymbetov, E., Orymbetova, G. E., Khussanov, A. E., Orymbetov, T. E., & Orymbetov, B. E. (2022). Sectioning of petroleum gas adsorption drying. Series of geology and technical sciences. News of the National Academy of Sciences of the Republic of Kazakhstan. Series of geology and technology sciences, vol. 3 (453), pp. 155–165. https://doi.org/10.32014/2022.2518-170x.187.
  12. Bloch, H. P. (2017). Subject Category 43 – Turboexpanders. Petrochemical Machinery Insights, pp. 657−660. https://doi.org/10.1016/B978-0-12-809272-9.00043-8.
  13. (2025). Projects of PrJSC “Turbogaz”. PrJSC “Turbogaz”: official website. https://turbogaz.com.ua/uk/projects.
  14. Moiseiev, S. V., Novikov, M. K., Burniashev, A. V., Pakki, H. V., Tkachuk, M. A., Lvov, H. I., Kravchenko, S. O., & Podrieza, S. M. (2023). Rozroblennia proryvnykh tekhnolohii zmitsnennia elementiv turbodetandernykh ustanovok [Development of breakthrough technologies for strengthening of turbo-expansion installations elements]. Visnyk Natsionalnoho tekhnichnoho universytetu «KhPI». Seriia: Mashynoznavstvo ta SAPRBulletin of the National Technical University «KhPI» Series: Engineering and CAD, no. 1, pp. 53–67 (in Ukrainian). https://doi.org/10.20998/2079-0775.2023.1.06.
  15. Tkachuk, M., Lvov, G., Kravchenko, S., Moiseiev, S., Novikov, M., Burniashev, A., Pakki, G., & Podrieza, S. (2023). Substantiating promising technical solutions for turbo- expander power plants based on the research into working processes and states. Eastern-European Journal of Enterprise Technologies, vol. 4, no. 7 (124), pp. 98–105. https://doi.org/10.15587/1729-4061.2023.285865.
  16. (2021). Moiseiev, S. V., Burniashev, A. V., Plakhotnyk, V. V., & Borysenko, O. V. Dotsentrova turbina [Centrifugal turbine]: Patent for invention No. 123415. State Register of Inventions of Ukraine. Published 03/31/2021, Bulletin No. 13/2021 (in Ukrainian). https://sis.nipo.gov.ua/uk/search/detail/1585827/.
  17. (2021). Moiseiev, S. V., Burniashev, A. V., Plakhotnyk, V. V., & Borysenko, O. V. Rehulovanyi soplovyi aparat dotsentrovoi turbiny [Adjustable nozzle apparatus of a centrifugal turbine]: Patent for invention No. 123333. State Register of Inventions of Ukraine. Published 03/17/2021, Bulletin No. 11/2021 (in Ukrainian). https://sis.nipo.gov.ua/uk/search/detail/1483943/.
  18. Rusanov, A. V. & Yershov, S. V. (2008). Matematicheskoye modelirovaniye nestatsionarnykh gazodinamicheskikh protsessov v protochnykh chastyakh turbomashin [Mathematical modeling of non-stationary gas-dynamic processes in flow parts of turbomachines]. Kharkiv: IPMash of NAS of Ukraine, 275 p. (in Russian).
  19. Bilan, A. V. & Bilan, V. N. (2006). Avtomatizirovannoye proyektirovaniye lopatok parovykh turbin [Automated design of steam turbine blades]. Kompressornoye i energeticheskoye mashinostroyeniyeCompressor and Power Machine Industry, no. 3 (5), pp. 66–68 (in Russian).
  20. Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. USA, MA, Boston: Addison-Wesley Longman Publishing Co., Inc., 412 p.
  21. Thevenin, D. & Janiga, G. (2008). Optimization and Computational Fluid Dynamics. Springer-Verlag Berlin Heidelberg, 294 p. https://doi.org/10.1007/978-3-540-72153-6.
  22. Rusanov, R., Klonowicz, P., Rusanov, A., Lampart, P., Jedrzejewski, L., & Witanowski, L. (2015). Methods for designing of axial turbines for ORC cogeneration unit working with MDM. NTU “KhPI” Bulletin: Power and heat engineering processes and equipment, no. 15, pp. 86−100. https://doi.org/10.20998/2078-774X.2015.15.11.
  23. Rusanov, A. V. (2013). Ispolzovaniye sovremennykh kompyuternykh tekhnologiy dlya sozdaniya vysokoeffektivnykh protochnykh chastey radialno-osevogo tipa [Using modern computer technologies to create highly efficient radial-axial flow parts]. Kompressornoye i energeticheskoye mashinostroyeniyeCompressor and Power Machine Industry, no. 2 (32), pp. 4–9 (in Russian).
  24. Rusanov, A. V., Shatravka, O. I., & Kosyanova, A. I. (2009). Profilirovaniye radialno-osevykh turbin s ispolzovaniyem sovremennykh kompyuternykh tekhnologiy [Profiling of radial-axial turbines using modern computer technologies]. Vostochno-Yevropeyskiy zhurnal peredovykh tekhnologiyEastern-European Journal of Enterprise Technologies, vol. 4, no. 4 (40), pp. 58–62 (in Russian). https://doi.org/10.15587/1729-4061.2009.21037.
  25. Rusanov, A. V., Rusanov, R. A., Pashchenko, N. V., & Chuhai, M. O. (2018). Analytical method of profiling axial-radial compressor impellers. Journal of Mechanical Engineering – Problemy Mashynobuduvannia, vol. 21, no. 4, pp. 4-13. https://doi.org/10.15407/pmach2018.04.004.
  26. Anderson, D. A., Tannehill, J. C., & Pletcher, R. H. (1997). Computational Fluid Mechanics and Heat Transfer. Taylor and Francis: Milton Park, UK, 816 p.
  27. Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, vol. 32, no. 8, pp. 1598–1605. https://doi.org/10.2514/3.12149.
  28. Benedict, M., Webb, G. B., & Rubin, L. C. (1940). An empirical equation for thermodynamic properties of light hydrocarbons and their mixtures I. Methane, ethane, propane, and n–butane. Journal of Chemical Physics, vol. 8, iss. 4, pp. 334–345. https://doi.org/10.1063/1.1750658.
  29. Rusanov, A. V. (2013). Interpolyatsionno-analiticheskiy metod ucheta real’nykh svoystv gazov i zhidkostey [Interpolation-analytical method of taking into account real properties of gases and fluids]. Vostochno-Yevropeyskiy zhurnal peredovykh tekhnologiyEastern-European Journal of Enterprise Technologies, vol. 3, no. 10 (63), pp. 53–57 (in Russian). https://doi.org/10.15587/1729-4061.2013.14864.
  30. Rusanov, A. V., Lampart, P., & Rusanov, R. A. (2014). Interpolyatsionno-analiticheskaya approksimatsiya modifitsirovannogo uravneniya sostoyaniya Benedikta-Vebba-Rubina dlya ucheta realnykh svoystv rabochikh tel v trekhmernykh raschetakh [Interpolation-analytical approximation of the modified Benedict-Webb-Rubin equation of state to take into account the real properties of working bodies in three-dimensional calculations]. Kompressornoye i energeticheskoye mashinostroyeniyeCompressor and Power Machine Industry, no. 3, pp. 18–23 (in Russian).
  31. Tammann, G. (1895). Ueber die Abhängigkeit der volumina von Lösungen vom druck [On the dependence of the volumes of solutions on pressure]. Zeitschrift für Physikalische ChemieJournal of Physical Chemistry, vol. 17U, no. 1, pp. 620−636 (in German). https://doi.org/10.1515/zpch-1895-1738.
  32. Yershov, S., Rusanov, A., Gardzilewicz, A., & Lampart, P. (1999). Calculations of 3D viscous compressible turbomachinery flows. Proc. 2nd Symp. on Comp. Technologies for Fluid/Thermal/Chemical Systems with Industrial Applications, ASME PVP Division Conf., 1–5 August 1999, Boston, USA, PVP, vol. 397 (2), pp. 143–154.
  33. Rzadkowski, R., Zywica, G., Kaczmarczyk, T. Z., Koprowski, A., Dominiczak, K., Szczepanik, R., & Kowalski, M. (2020). Design and investigation of a partial admission radial 2.5-kW organic Rankine cycle micro-turbine. International Journal of Energy Research, vol. 44 (14), pp. 11029–11043. https://doi.org/10.1002/er.5670.

 

Received 14 October 2024

Accepted 16 December 2024

Published 30 March 2025