DOI | https://doi.org/10.15407/pmach2025.01.055 |
Journal | Journal of Mechanical Engineering – Problemy Mashynobuduvannia |
Publisher | Anatolii Pidhornyi Institute of Power Machines and Systems of National Academy of Science of Ukraine |
ISSN | 2709-2984 (Print), 2709-2992 (Online) |
Issue | Vol. 28, no. 1, 2025 (March) |
Pages | 55-73 |
Cited by | J. of Mech. Eng., 2025, vol. 28, no. 1, pp. 55-73 |
Authors
Serhii V. Horianoi, Thermal Energy Technology Institute of NAS of Ukraine (19, Andriivska str., Kyiv, Ukraine), National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” (37, Beresteiskyi ave., Kyiv, 03056, Ukraine), e-mail: horianoisv@gmail.com, ORCID: 0000-0001-9484-6768
Ihor A. Volchyn, Thermal Energy Technology Institute of NAS of Ukraine (19, Andriivska str., Kyiv, Ukraine), National University of Food Technologies (68, Volodymyrska str., Kyiv, 01033, Ukraine), e-mail: volchyn@gmail.com, ORCID: 0000-0002-5388-4984
Abstract
The ways to achieve the requirements of modern environmental legislation of Ukraine and the European Union regarding the limiting emissions of pollutants from large and medium-sized combustion plants concerning the solid fuel steam boilers of municipal and industrial combine heat and power plants (CHPP) in Ukraine is analyzed in the paper. The environmental requirements and technologies for cleaning flue gases of solid fuel boilers from the main pollutants, namely particulate matter, sulfur dioxide and nitrogen oxides, were considered, and the effectiveness, advantages and limitations for the implementation of these technologies on existing boilers of thermal power plants were analyzed. The existing state of gas cleaning equipment, put into operation more than fifty years ago, does not meet current environmental requirements, and the urgent issue is the reconstruction and modernization of existing and the construction of new gas cleaning plants. The use of fabric filters, electrostatic filters and wet scrubbers with a Venturi tube will allow to fulfill the requirements of European directives on dust emission limit values, and the most rational solution will be to use the existing wet scrubbers with a Venturi tube, which are equipped on the vast majority of CHPPs, by significantly increasing the specific flow rate of liquid for irrigation. For the capture of gaseous pollutants, a promising direction is the use of ammonium reagents for highly efficient desulfurization and obtaining ammonium sulfate as a desulfurization product, which is a mineral fertilizer, and the reduction of nitrogen oxides to molecular nitrogen. The use of an aqueous solution of ammonia in a wet scrubber with a Venturi tube will allow to simultaneously capture fly ash and sulfur dioxide in one device. To reduce nitrogen oxide emissions in CHPP boilers, it is advisable from the point of view of investment costs and spatial conditions to use the method of selective non-catalytic reduction.
Keywords: steam boiler, flue gas, emission, Venturi tube, particulate matter, sulfur dioxide, ammonia, nitrogen oxides.
Full text: Download in PDF
References
- Asghar, U., Rafiq, S., Anwar, A., Iqbal, T., Ahmed, A., Jamil, F., Khurram, M. S., Akbar, M. M., Farooq, A., Shah, N. S., Park, Y.-K. (2021). Review on the progress in emission control technologies for the abatement of CO2, SOx and NOx from fuel combustion. Journal of Environmental Chemical Engineering, vol. 9, article 106064. https://doi.org/10.1016/j.jece.2021.106064.
- (2006). Pro zatverdzhennia normatyviv hranychnodopustymykh vykydiv zabrudniuiuchykh rechovyn iz statsionarnykh dzherel [On approval of standards for maximum permissible emissions of pollutants from stationary sources]: Order No. 309 of 27.06.2006 of the Ministry of Environmental Protection of Ukraine (in Ukrainian). https://zakon.rada.gov.ua/laws/show/z0912-06#Text.
- (2018). Pro vnesennia zmin do nakazu Minpryrody vid 22 zhovtnia 2008 roku [On Amendments to the Order of the Ministry of Ecology and Natural Resources of October 22, 2008 No. 541]: Order No. 62 of February 16, 2018 of the Ministry of Ecology and Natural Resources of Ukraine (in Ukrainian). https://zakon.rada.gov.ua/laws/show/z0290-18#Text.
- (2010). Directive (EU) 2010/75 of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control). Official Journal of the European Communities, L 334, pp. 17–119. https://data.europa.eu/eli/dir/2010/75/oj.
- (2015). Directive (EU) 2015/2193 of the European Parliament and of the Council of 25 November 2015 on the limitation of emissions of certain pollutants into the air from medium combustion plants. Official Journal of the European Communities, L 313, pp. 1–19. https://data.europa.eu/eli/dir/2015/2193/oj.
- Myllyvirta, L. & Geiners, R. (2021). Health Impacts of Coal Power Plant Emissions in Ukraine. Centre for Research on Energy and Clean Air (CREA): official website. https://energyandcleanair.org/publication/health-impacts-of-coal-power-plant-emissions-in-ukraine/.
- (2011). Podatkovyi kodeks Ukrainy vid 2/12/2010 № 2755-VI (zi zminamy ta dopovnenniamy) [Tax Code of Ukraine dated December 2, 2010 No. 2755-VI (with amendments and supplements)]. Vidomosti Verkhovnoi Rady Ukrainy – Information of the Verkhovna Rada of Ukraine, no. 13–14, article 112. [electronic resource] (in Ukrainian). https://zakon.rada.gov.ua/laws/show/2755-17.
- Rajagopalan, S. T., Al-Kindi, S. G., & Brook, R. D. (2018). Air pollution and cardiovascular disease: JACC state-of-the-art review. Journal of the American College of Cardiology, vol. 72, iss. 17, pp. 2054-2070. https://doi.org/10.1016/j.jacc.2018.07.099.
- Marval, J. & Tronville, P. (2022). Ultrafine particles: A review about their health effects, presence, generation, and measurement in indoor environments. Building and Environment, vol. 216, article 108992. https://doi.org/10.1016/j.buildenv.2022.108992.
- Arias-Pérez, R. D., Taborda, N. A., Gómez, D. M., Narvaez, J. F., Porras, J., & Hernande, J. C. (2020). Inflammatory effects of particulate matter air pollution. Environmental Science and Pollution Research, vol. 27, pp. 42390–42404. https://doi.org/10.1007/s11356-020-10574-w.
- Manisalidis, I., Stavropoulou, E., Stavropoulos, A., & Bezirtzoglou, E. (2019). Environmental and health impacts of air pollution: A review. Frontiers in Public Health, vol. 8, article 14. https://doi.org/10.3389/fpubh.2020.00014.
- Lecomte, T., Ferrería de la Fuente, J. F., Neuwahl, F., Canova, M., Pinasseau, A., Jankov, I., Brinkmann, T., Roudier, S., & Sancho, L. D. (2017). Best available techniques (BAT) reference document for large combustion plants. JRC science for policy report. EUR 28836 EN. European Commission, 986 p. https://doi.org/10.2760/949.
- Bianchini, A., Cento, F., Golfera, L., Pellegrini, M., & Saccani, C. (2016). Performance analysis of different scrubber systems for removal of particulate emissions from a small size biomass boiler. Biomass and Bioenergy, vol. 92, pp. 31–39. https://doi.org/10.1016/j.biombioe.2016.06.005.
- Miller, B. G. (2017). Clean Coal Engineering Technology. Elsevier.
- Zhang, K., Huo, Q., Zhou, Y.-Y., Wang, H.-H., Li, G.-P., Wang, Y.-W., & Wang, Y.-Y. (2019). Textiles/metal–organic frameworks composites as flexible air filters for efficient particulate matter removal. ACS Applied Materials & Interfaces, vol. 11, iss. 19, pp. 17368–17374. https://doi.org/10.1021/acsami.9b01734.
- Woo, H. C., Yoo, D. K., & Jhung, S. H. (2020). Highly improved performance of cotton air filters in particulate matter removal by the incorporation of metal–organic frameworks with functional groups capable of large charge separation. ACS Applied Materials & Interfaces, vol. 12, iss. 25, pp. 28885–28893. https://doi.org/10.1021/acsami.0c07123.
- Kadam, V. V., Wang, L., & Padhye, R. (2018). Electrospun nanofibre materials to filter air pollutants – A review. Journal of Industrial Textiles, vol. 47, iss. 8, pp. 2253–2280. https://doi.org/10.1177/1528083716676812.
- Luhovskyi, O. F., Kovalov, V. A., Fesych, V. P., & Dudka, Ye. Yu. (2018). Udoskonalennia promyslovykh system osushennia povitria shliakhom zastosuvannia ultrazvukovykh kolyvan [Improvement of industrial air dehumidification systems by using ultrasonic vibrations]. Mechanics and Advanced Technologies, no 1 (82), pp. 20–27 (in Ukrainian). https://doi.org/10.20535/2521-1943.2018.82.126108.
- Romero, C. E. & Wang, X. (2019). Chapter three-key technologies for ultra-low emissions from coal-fired power plants. Advances in Ultra-Low Emission Control Technologies for Coal-Fired Power Plants, pp. 39–79. https://doi.org/10.1016/B978-0-08-102418-8.00003-6.
- (2025). Elektrofiltr DVP [Fiberboard electrostatic precipitator]. Wikipedia [electronic resource] (in Ukrainian). https://uk.wikipedia.org/wiki/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D1%84%D1%96%D0%BB%D1%8C%D1%82%D1%80_%D0%94%D0%92%D0%9F (access on 10/01/2025).
- Bian, H. (2020). Analysis on flue gas pollution of coal-fired boiler and its countermeasures. IOP Conference Series: Earth and Environmental Science, vol. 450, article 012028. https://doi.org/10.1088/1755-1315/450/1/012028.
- Volchyn, I. A. & Rashchepkin, V. A. (2023). Modeliuvannia protsesu ochyshchennia zapylenoho hazovoho potoku v ramkakh kinematychnoi modeli vzaiemodii dyspersnykh chastynok ta krapel u mokromu skruberi [Modeling the process of cleaning a dusty gas flow within the framework of a kinematic model of the interaction of dispersed particles and droplets in a wet scrubber]. Enerhotekhnolohii ta resursozberezhennia – Energy Technologies & Resource Saving, no. 3, pp. 84–89 (in Ukrainian). https://doi.org/10.33070/etars.3.2021.7.
- Darbandi, T., Risberg, M., & Westerlund, L. (2024). Enhancing particle segregation in stem wood combustion flue gas wet scrubbers: Experimental investigation of operational conditions. Case Studies in Thermal Engineering, vol. 64, article 105427. https://doi.org/10.1016/j.csite.2024.105427.
- Byeon, S.-H., Lee, B.-K., & Ray Mohan, B. (2012). Removal of ammonia and particulate matter using a modified turbulent wet scrubbing system. Separation and Purification Technology, vol. 98, pp. 221–229. https://doi.org/10.1016/j.seppur.2012.07.014.
- Baciak, M., Warmiński, K., & Bes, A. (2015). The effect of selected gaseous air pollutants on woody plants. Forest Research Papers, vol. 76, iss. 4, pp. 401–409. https://doi.org/10.1515/frp-2015-0039.
- Goulding, K. W. T. (2016). Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use and Management, vol. 32, iss. 3, pp. 390–399. https://doi.org/10.1111/sum.12270.
- Khalaf, E. M., Mohammadi, M. J., Sulistiyani, S., Ramírez-Coronel, A. A., Kiani, F., Turki Jalil, A., Almulla, A. F., Asban, P., Farhadi, M., & Derikondi, M. (2024). Effects of sulfur dioxide inhalation on human health: A review. Reviews on Environmental Health, vol. 39, iss. 2, pp. 331–337. https://doi.org/10.1515/reveh-2022-0237.
- Breeze, P. (2005). 3-Coal-fired power plants. Power Generation Technologies, pp. 18–42. https://doi.org/10.1016/b978-075066313-7/50004-8.
- Koech, L., Rutto, H., Lerotholi, L., Everson, R. C., Neomagus, H., Branken, D., & Moganelwa, A. (2021). Spray drying absorption for desulphurization: a review of recent developments. Clean Technologies and Environmental Policy, vol. 23, iss. 6, pp. 1665–1686. https://doi.org/10.1007/s10098-021-02066-3.
- Córdoba, P. (2015). Status of flue gas desulphurisation (FGD) systems from coal-fired power plants: Overview of the physic-chemical control processes of wet limestone FGDs. Fuel, vol. 144, pp. 274–286. https://doi.org/10.1016/j.fuel.2014.12.065.
- Zhu, Q. (2010). Non-calcium desulphurisation technologies. IEA Clean Coal Centre.
- Yang, G., Wu, D., Gou, Y., Dong, Y., Jiang, J., Chen, Y., Zhang, M., Song, C., Jiang, J., & Jia, Y. (2022). Study on the mass transfer of SO2 in ammonia-based desulfurization process. Frontiers in Materials, vol. 9, article 1048393. https://doi.org/10.3389/fmats.2022.1048393.
- He, R. C. & Gu, X. J. (2014). Study of advanced process control technology and its application for ammonia-based flue gas desulfurization process. Advanced Materials Research, vol. 1039, pp. 338–344. https://doi.org/10.4028/www.scientific.net/AMR.1039.338.
- Volchyn, I. A., Mezin, S. V., Yasynetskyi, A. O. (2018). Doslidzhennia pohlynannia dioksydu sirky amoniakom u hazovii fazi u prysutnosti vodianoi pary [Investigation of the absorption of sulfur dioxide by ammonia in the gas phase in the presence of water vapor]. Ekolohichni nauky – Ecological Sciences, no. 1(20), vol. 1, pp. 104–108 (in Ukrainian).
- Dasarathy, S., Mookerjee, R. P., Rackayova, V., Thrane, V. R., Vairappan, B., Ott, P., & Rose, C. F. (2017). Ammonia toxicity: from head to toe? Metabolic Brain Disease, vol. 32, pp. 529–538. https://doi.org/10.1007/s11011-016-9938-3.
- Chen, X., Sun, P., Cui, L., Xu, W., & Dong, Y. (2022). Limestone-based dual-loop wet flue gas desulfurization under oxygen-enriched combustion. Fuel, vol. 322, article 124161. https://doi.org/10.1016/j.fuel.2022.124161.
- Zhao, Z., Zhang, Y., Gao, W., Baleta, J., Liu, C., Li, W., Weng, W., Dai, H., Zheng, C., & Gao, X. (2021). Simulation of SO2 absorption and performance enhancement of wet flue gas desulfurization system. Process Safety and Environmental Protection, vol. 150, pp. 453–463. https://doi.org/10.1016/j.psep.2021.04.032.
- Wang, E. W., Lei, S. M., Zhong, L. L., & Zhang, S. C. (2014). Review of advanced technology of flue gas desulphurization. Advanced Materials Research, vol. 852, pp. 86–91. https://doi.org/10.4028/www.scientific.net/AMR.852.86.
- Flagiello, D., Di Natale, F., Erto, A., Lancia, A. (2020). Wet oxidation scrubbing (WOS) for flue-gas desulphurization using sodium chlorite seawater solutions. Fuel, vol. 277, article 118055. https://doi.org/10.1016/j.fuel.2020.118055.
- Flagiello, D., Di Natale, F., Lancia, A., Sebastiani, I., Nava, F., Milicia, A., Erto, A. (2023). A thermodynamic/kinetic study of ammonia-based flue gas desulfurization processes. Chemical Engineering Transactions, vol. 100, pp. 235–240. https://doi.org/10.3303/CET23100040.
- Wang, S. J., Zhu, P., Zhang, G., Zhang, Q., Wang, Z. Y., Zhao, L. (2015). Numerical simulation research of flow field in ammonia-based wet flue gas desulfurization tower. Journal of the Energy Institute, vol. 88, iss. 3, pp. 284–291. https://doi.org/10.1016/j.joei.2014.09.002.
- Liu, P. & McLinden, D. (2017). Ammonia-based flue gas desulfurization. Power engineering, vol. 121, iss. 7 [electronic resource]. https://www.power-eng.com/emissions/ammonia-based-flue-gas-desulfurization/.
- Yang, F., Liu, H., Feng, P., Li, Z., & Tan, H. (2020). Effects of wet flue gas desulfurization and wet electrostatic precipitator on particulate matter and sulfur oxide emission in coal-fired power plants. Energy & Fuels, vol. 34, iss. 12, pp. 16423–16432. https://doi.org/10.1021/acs.energyfuels.0c03222.
- Zhang, Z. H., Li, Y. H., & Lan, Y. Z. (2013). Experimental study on fluid mechanics of nozzle and ammonia desulfurization of iron and steel sintering furnace. Advanced Materials Research, vol. 803, pp. 363–366. https://doi.org/10.4028/www.scientific.net/AMR.803.363.
- Yong, J., Zhong, Q., Fan, X., Chen, Q., & Sun, H. (2011). Modeling of ammonia-based wet flue gas desulfurization in the spray scrubber. Korean Journal of Chemical Engineering, vol. 28, iss. 4, pp. 1058–1064. https://doi.org/10.1007/s11814-010-0472-4.
- Zhu, F., Gao, J., Chen, X., Tong, M., Zhou, Y., & Lu, J. (2015). Hydrolysis of urea for ammonia-based wet flue gas desulfurization. Industrial & Engineering Chemistry Research, vol. 54, iss. 37, pp. 9072–9080. https://doi.org/10.1021/acs.iecr.5b02041.
- Khan, R. R. & Siddiqui, M. J. (2014). Review on effects of particulates: sulfur dioxide and nitrogen dioxide on human health. International Research Journal of Environment Sciences, vol. 3, iss. 4, pp. 70–73.
- De Vries, W. (2021). Impacts of nitrogen emissions on ecosystems and human health: A mini review. Current Opinion in Environmental Science & Health, vol. 21, article 100249. https://doi.org/10.1016/j.coesh.2021.100249.
- Gholami, F., Tomas, M., Gholami, Z., & Vakili, M. (2020). Technologies for the nitrogen oxides reduction from flue gas: A review. Science of the Total Environment, vol. 714, article 136712. https://doi.org/10.1016/j.scitotenv.2020.136712.
- Zhu, Z. & Xu, B. (2022). Purification technologies for NOx removal from flue gas: A review. Separations, vol. 9, iss. 10, article 307. https://doi.org/10.3390/separations9100307.
- Machač, P. & Baraj, E. (2018). A simplified simulation of the reaction echanism of NOx formation and non-catalytic reduction. Combustion Science and Technology, vol. 190, iss. 6, pp. 967–982. https://doi.org/10.1080/00102202.2017.1418335.
- Ahli Gharamaleki, M. (2018). Selective non-catalytic reduction of NOx in a cyclone reactor. Technical University of Denmark, 180 p. https://orbit.dtu.dk/files/161971285/Final_thesis_klar_til_print_31.10.2018_Mohammad_Ahli_Gharamaleki.pdf.
- Park, P.-M., Park, Y.-K., & Dong, J.-I. (2021). Reaction characteristics of NOx and N2O in selective non-catalytic reduction using various reducing agents and additives. Atmosphere, vol. 12, iss. 9, article 1175. https://doi.org/10.3390/atmos12091175.
- Svith, C. S., Lin, W., Dam-Johansen, K., & Wu, H. (2022). An experimental and modelling study of the selective non-catalytic reduction (SNCR) of NOx and NH3 in a cyclone reactor. Chemical Engineering Research and Design, vol. 183, pp. 331–344. https://doi.org/10.1016/j.cherd.2022.05.014.
- Locci, C., Vervisch, L., Farcy, B., Domingo, P., & Perret, N. (2018). Selective non-catalytic reduction (SNCR) of nitrogen oxide emissions: A perspective from numerical modeling. Flow, Turbulence and Combustion, vol. 100, pp. 301–340. https://doi.org/10.1007/s10494-017-9842-x.
- Yang, W. (2019). Summary of flue gas denitration technology for coal-fired power plants. IOP Conference Series: Earth and Environmental Science, vol. 300, article 032054. https://doi.org/10.1088/1755-1315/300/3/032054.
- Volchyn, I., Kryvosheiev, S., Yasynetskyi, A., Zaitsev, A., & Samchenko, O. (2022). Selective non-catalytic reduction of nitrogen oxides in the production of iron ore pellets. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, no. 1, pp. 88–94. https://doi.org/10.33271/nvngu/2022-1/088.
- Lai, J.-K. & Wachs, I. E. (2018). A perspective on the selective catalytic reduction (SCR) of NO with NH3 by supported V2O5−WO3/TiO2 catalysts. ACS Catalysis, vol. 8, iss. 7, pp. 6537−6551. https://doi.org/10.1021/acscatal.8b01357.
- Sorrels, J. L., Randall, D. D., Schaffner, K. S., & Fry, C. R. (2019). Chapter 2. Selective Catalytic Reduction. U.S. Environmental Protection Agency, 107 p. https://www.epa.gov/sites/default/files/2017-12/documents/scrcostmanualchapter7thedition_2016revisions2017.pdf.
- Xu, J., Chen, G., Guo, F., & Xie, J. (2018). Development of wide-temperature vanadium-based catalysts for selective catalytic reducing of NOx with ammonia: Review. Chemical Engineering Journal, vol. 353, pp. 507–518. https://doi.org/10.1016/j.cej.2018.05.047.
- Shan, W. & Song, H. (2015). Catalysts for the selective catalytic reduction of NOx with NH3 at low temperature. Catalysis Science & Technology, vol. 5, iss. 9, pp. 4280–4288. https://doi.org/10.1039/C5CY00737B.
Received 03 February 2025
Accepted 28 February 2025
Published 30 March 2025